[1]
|
Huang S N, Tan K K, Lee T H. Decentralized control design for large-scale systems with strong interconnections using neural networks. IEEE Transactions on Automatic Control, 2003, 48(5): 805−810 doi: 10.1109/TAC.2003.811258
|
[2]
|
Huang S N, Tan K K, Lee T H. Decentralized control of a class of large-scale nonlinear systems using neural networks. Automatica, 2005, 41(9): 1645−1649 doi: 10.1016/j.automatica.2005.02.010
|
[3]
|
Tong S C, Li Y M, Liu Y J. Adaptive fuzzy output feedback decentralized control of pure-feedback nonlinear large-scale systems. International Journal of Robust and Nonlinear Control, 2014, 24(5): 930−954 doi: 10.1002/rnc.2927
|
[4]
|
Li T S, Li R H, Li J F. Decentralized adaptive neural control of nonlinear interconnected large-scale systems with unknown time delays and input saturation. Neurocomputing, 2011, 74(14): 2277−2283
|
[5]
|
Tong S C, Li Y M, Li T S. Observer-based adaptive fuzzy backstepping dynamic surface control for a class of non-linear systems with unknown time delays. IET Control Theory & Applications, 2011, 5(12): 1426−1438
|
[6]
|
Zhou Q, Shi P, Xu S Y, Li H Y. Observer-based adaptive neural network control for nonlinear stochastic systems with time delay. IEEE Transactions on Neural Networks and Learning Systems, 2013, 24(1): 71−80 doi: 10.1109/TNNLS.2012.2223824
|
[7]
|
Wang F, Liu Z, Li X H, et al. Observer-based finite time control of nonlinear systems with actuator failures. Information Sciences, 2019, 500: 1−14 doi: 10.1016/j.ins.2019.05.067
|
[8]
|
Yang Y, Yue D. Observer-based decentralized adaptive NNs fault-tolerant control of a class of large-scale uncertain nonlinear systems with actuator failures. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2019, 49(3): 528−542 doi: 10.1109/TSMC.2017.2744676
|
[9]
|
Zhang L L, Yang G H. Observer-based adaptive decentralized fault-tolerant control of nonlinear large-scale systems with sensor and actuator faults. IEEE Transactions on Industrial Electronics, 2019, 66(10): 8019−8029 doi: 10.1109/TIE.2018.2883267
|
[10]
|
杨彬, 周琪, 曹亮, 等. 具有指定性能和状态约束的多智能体系统事件触发控制. 自动化学报, 2019, 45(8): 1527−1535Yang Bin, Zhou Qi, Cao Liang, et al. Event-triggered control for multi-agent systems with prescribed performance and full state constraints. Acta Automatica Sinica, 2019, 45(8): 1527−1535
|
[11]
|
Li Y M, Ma Z Y, Tong S C. Adaptive fuzzy output-constrained fault-tolerant control of nonlinear stochastic large-scale systems with actuator faults. IEEE Transactions on Cybernetics, 2017, 47(9): 2362−2376 doi: 10.1109/TCYB.2017.2681683
|
[12]
|
郑晓宏, 董国伟, 周琪, 等. 带有输出约束条件的随机多智能体系统容错控制. 控制理论与应用, 2020, 37(5): 961−968Zheng Xiao-hong, Dong Guo-wei, Zhou Qi, et al. Fault-tolerant control for stochastic multi-agent systems with output constraints. Control Theory&Applications, 2020, 37(5): 961−968
|
[13]
|
Wang L J, Li H Y, Zhou Q, et al. Adaptive fuzzy control for nonstrict feedback systems with unmodeled dynamics and fuzzy dead zone via output feedback. IEEE Transactions on Cybernetics, 2017, 47(9): 2400−2412 doi: 10.1109/TCYB.2017.2684131
|
[14]
|
Tong S C, Wang T, Li Y M, et al. Adaptive neural network output feedback control for stochastic nonlinear systems with unknown dead-zone and unmodeled dynamics. IEEE Transactions on Cybernetics, 2014, 44(6): 910−921 doi: 10.1109/TCYB.2013.2276043
|
[15]
|
Wu Z J, Xie X J, Zhang S Y. Adaptive backstepping controller design using stochastic small-gain theorem. Automatica, 2007, 43(4): 608−620 doi: 10.1016/j.automatica.2006.10.020
|
[16]
|
Wang X J, Yin X H, Wu Q H, et al. Disturbance observer based adaptive neural control of uncertain MIMO nonlinear systems with unmodeled dynamics. Neurocomputing, 2018, 313: 247−258 doi: 10.1016/j.neucom.2018.06.031
|
[17]
|
Tong S C, Liu C L, Li Y M. Fuzzy-adaptive decentralized output-feedback control for large-scale nonlinear systems with dynamical uncertainties. IEEE Transactions on Fuzzy Systems, 2010, 18(5): 845−861 doi: 10.1109/TFUZZ.2010.2050326
|
[18]
|
Xia X N, Zhang T P. Adaptive quantized output feedback DSC of uncertain systems with output constraints and unmodeled dynamics based on reduced-order K-filters. Neurocomputing, 2018, 310: 236−245 doi: 10.1016/j.neucom.2018.05.031
|
[19]
|
Chen M, Tao G. Adaptive fault-tolerant control of uncertain nonlinear large-scale systems with unknown dead zone. IEEE Transactions on Cybernetics, 2016, 46(8): 1851−1862 doi: 10.1109/TCYB.2015.2456028
|
[20]
|
张绍杰, 吴雪, 刘春生. 执行器故障不确定非线性系统最优自适应输出跟踪控制. 自动化学报, 2018, 44(12): 2188−2197Zhan Shao-Jie, Wu Xue, Liu Chun-Sheng. Optimal adaptive output tracking control for a class of uncertain nonlinear systems with actuator failures. Acta Automatica Sinica, 2018, 44(12): 2188−2197
|
[21]
|
Cao L, Li H Y, Wang N, et al. Observer-based event-triggered adaptive decentralized fuzzy control for nonlinear large-scale systems. IEEE Transactions on Fuzzy Systems, 2019, 27(6): 1201−1214 doi: 10.1109/TFUZZ.2018.2873971
|
[22]
|
Yu H, Hao F, Chen T W. A uniform analysis on input-to-state stability of decentralized event-triggered control systems. IEEE Transactions on Automatic Control, 2019, 64(8): 3423−3430 doi: 10.1109/TAC.2018.2879764
|
[23]
|
Rahnama A, Xia M, Antsaklis P J. A QSR-dissipativity based design for event-triggered networked systems. IEEE Transactions on Automatic Control, 2019, 64(6): 2590−2597 doi: 10.1109/TAC.2018.2866987
|
[24]
|
周琪, 陈广登, 鲁仁全, 等. 基于干扰观测器的输入饱和多智能体系统事件触发控制. 中国科学:信息科学, 2019, 49(11): 1502−1516 doi: 10.1360/SSI-2019-0105Zhou Qi, Chen Guang-Deng, Lu Ren-Quan, et al. Disturbance-observer-based event-triggered control for multi-agent systems with input saturation. Scientia Sinica Information, 2019, 49(11): 1502−1516 doi: 10.1360/SSI-2019-0105
|
[25]
|
Jiang Z P, Hill D J. A robust adaptive backstepping scheme for nonlinear systems with unmodeled dynamics. IEEE Transactions on Automatic Control, 1999, 44(9): 1705−1711 doi: 10.1109/9.788536
|
[26]
|
Chen B, Liu X P, Ge S S, et al. Adaptive fuzzy control of a class of nonlinear systems by fuzzy approximation approach. IEEE Transactions on Fuzzy Systems, 2012, 20(6): 1012−1021 doi: 10.1109/TFUZZ.2012.2190048
|
[27]
|
Wang L Q, Dong J X, Xi C J. Event-triggered adaptive consensus for fuzzy output-constrained multi-agent systems with observers. Journal of the Franklin Institute, 2020, 357(1): 82−105 doi: 10.1016/j.jfranklin.2019.09.033
|
[28]
|
Wang H Q, Chen B, Liu X P, et al. Robust adaptive fuzzy tracking control for pure-feedback stochastic nonlinear systems with input constraints. IEEE Transactions on Cybernetics, 2013, 43(6): 2093−2104 doi: 10.1109/TCYB.2013.2240296
|
[29]
|
郭子杰, 白伟伟, 周琪, 等. 基于性能指标约束的一类输入死区非线性系统最优控制. 自动化学报, 2019, 45(11): 2128−2136Guo Zi-Jie, Bai Wei-Wei, Zhou Qi, et al. Adaptive optimal control for a class of nonlinear systems with dead zone input and prescribed performance. Acta Automatica Sinica, 2019, 45(11): 2128−2136
|
[30]
|
Yu J P, Shi P, Dong W J, et al. Observer and command-filter-based adaptive fuzzy output feedback control of uncertain nonlinear systems. IEEE Transactions on Industrial Electronics, 2015, 62(9): 5962−5970 doi: 10.1109/TIE.2015.2418317
|
[31]
|
Dong W J, Jay A Farrel, Marios M, et al. Command filtered adaptive backstepping. IEEE Transactions on Control Systems Technology, 2012, 20(3): 566−580 doi: 10.1109/TCST.2011.2121907
|
[32]
|
Han Y, Yu J P, Zhao L, et al. Finite-time adaptive fuzzy control for induction motors with input saturation based on command filtering. IET Control Theory & Applications, 2018, 12(15): 2148−2155
|
[33]
|
Qiu J B, Sun K K, Rudas I J, et al. Command filter-based adaptive NN control for MIMO nonlinear systems with full-state constraints and actuator hysteresis. IEEE Transactions on Cybernetics, 2019, 50(7): 2905−2915
|