2.793

2018影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于信息几何的高超声速飞行器搜索方法

罗艺 谭贤四 王红 曲智国

罗艺, 谭贤四, 王红, 曲智国. 基于信息几何的高超声速飞行器搜索方法. 自动化学报, 2020, 46(x): 1−10 doi: 10.16383/j.aas.c200738
引用本文: 罗艺, 谭贤四, 王红, 曲智国. 基于信息几何的高超声速飞行器搜索方法. 自动化学报, 2020, 46(x): 1−10 doi: 10.16383/j.aas.c200738
Luo Yi, Tan Xian-Si, Wang Hong, Qu Zhi-Guo. Search method for hypersonic vehicle based on information geometry. Acta Automatica Sinica, 2020, 46(x): 1−10 doi: 10.16383/j.aas.c200738
Citation: Luo Yi, Tan Xian-Si, Wang Hong, Qu Zhi-Guo. Search method for hypersonic vehicle based on information geometry. Acta Automatica Sinica, 2020, 46(x): 1−10 doi: 10.16383/j.aas.c200738

基于信息几何的高超声速飞行器搜索方法

doi: 10.16383/j.aas.c200738
基金项目: 国家自然科学基金(61401504)资助
详细信息
    作者简介:

    罗艺:空军预警学院三系博士研究生, 主要研究方向为高超声速飞行器预警资源管理. 本文通信作者. E-mail: 13297983885@163.com

    谭贤四:空军预警学院三系教授, 主要研究方向为预警监视装备体系建设与运用等研究. E-mail: tanxs-hust@163.com

    王红:中国人民解放军93184部队教授, 主要研究方向为体系结构技术、装备论证等. E-mail: wanghong572g@sina.com

    曲智国:空军预警学院三系副教授, 主要研究方向图像处理, 预警监视, 高超声速飞行器预警技术等. E-mail: green20001@sina.com

Search Method for Hypersonic Vehicle Based on Information Geometry

Funds: Supported by National Natural Science Foundation of P. R. China (61401504)
  • 摘要: 由于地面雷达受视距限制无法对高超声速飞行器进行连续观测, 针对高超声速飞行器飞出雷达视距盲区后难以搜索的问题, 提出了一种基于信息几何的雷达搜索方法. 本文利用非参数概率密度估计法对高超声速飞行器的出现位置的概率密度进行估计, 并把估计的位置概率密度作为雷达搜索的引导信息; 根据引导信息确定搜索区域, 以区域覆盖率最大化作为优化目标在搜索区域内进行波位编排; 基于信息几何理论, 将搜索策略建模为统计流形, 利用KL(Kullback-Leibler)散度来度量搜索策略与引导信息之间的差异, 通过最小化KL散度获得最优搜索策略. 通过仿真实验验证了本文所提方法的有效性和可行性, 并验证了相比其他搜索方法具有较明显的优势.
  • 图  1  波位编排方式

    Fig.  1  Arrangement of wave position

    图  2  高超声速飞行器轨迹

    Fig.  2  Trajectory of hypersonic vehicle

    图  3  仿真场景示意图

    Fig.  3  Schematic diagram of simulation scene

    图  4  引导信息

    Fig.  4  Guide information

    图  5  搜索方法结果

    Fig.  5  Results of search method

    图  6  条目宽度与KL散度之间的关系

    Fig.  6  Relationship between item width and KL divergence

    图  7  波位编排优化求解中适应度变化

    Fig.  7  Change of fitness in the optimization of wave position arrangement

    图  8  KL散度距离变化

    Fig.  8  Change of KL divergence distance

    图  9  不同搜索方法下的捕获概率

    Fig.  9  Capture probability under different search methods

    图  10  不同搜索波位下的捕获概率

    Fig.  10  Capture probability under different search wave positions

    图  11  不同检测概率下的捕获概率

    Fig.  11  Capture probability under different detection probabilities

    图  12  未进行优化的波位编排

    Fig.  12  Arrangement of unoptimized wave position

    表  1  雷达参数

    Table  1  Radar parameters

    探测距离 / km测角误差 / °测距误差 / m
    20000.2100
    方位角覆盖范围 / °俯仰角覆盖范围 / °
    −75~+750~70
    波束宽度 / °波束驻留时间 / ms检测概率
    1×110080%
    下载: 导出CSV

    表  2  仿真结果对比

    Table  2  Comparison of simulation results

    方法波位编排方式搜索波位个数捕获概率
    本文所提方法优化6.278%
    未优化7.576%
    基于信息论的搜索方法优化7.339%
    未优化7.840%
    传统搜索方法平行搜索优化9.645%
    未优化10.245%
    随机搜索优化8.555%
    未优化8.953%
    螺旋搜索优化9.146%
    未优化9.546%
    下载: 导出CSV
  • [1] Kai Z, Jia J X, Ting F U. Coupled dynamic model of state estimation for hypersonic glide vehicle. Journal of Systems Engineering and Electronics, 2018, 29(6): 178−186
    [2] Yu C L, Tan X S, Qu Z G, et al. Marginal tracking algorithm for hypersonic reentry gliding vehicle. IET Radar, Sonar & Navigation, 2018, 13(1): 156−166
    [3] Li F, Xiong J J, Qu Z G, et al. A Dampled Oscillation Model for Tracking Near Space Hypersonic Gliding Targets. IEEE Transactions on Aerospace and Electronic Systems, 2019, 55(6): 2871−2890
    [4] Zhang K, Fu T, Xiong J. Estimation of aerodynamic parameter for maneuvering reentry vehicle tracking. Proceeding of the 36th China Control Conference, China, 2017: 2018−2022
    [5] Li G H, Zhang H B, Tang G J. Maneuver characteristics analysis for hypersonic glide vehicles. Aerospace Science and Technology, 2015, 43: 321−328
    [6] Malafaia D, Varum T, Matos D, et al. The concept of a fully electronic beamforming antenna array for modern radar systems. Microwave and Optical Technology Letters, 2018, 60(7): 1696−1702
    [7] Lu J B, Hu W D, Xiao H, et al. Novel cued search strategy based on information gain for phased array radar. Journal of Systems Engineering and Electronics, 2008, 19(2): 292−297
    [8] Byrne M, White K, Williams J. Scheduling multifunction radar for search and tracking. International Conference on Information Fusion. 18th International Conference on Information Fusion, Washington, 2015: 945−952
    [9] Severson T A, Paley D A. Distributed Multitarget Search and Track Assignment with Consensus-Based Coordination. Sensors Journal IEEE, 2015, 15(2): 864−875
    [10] Yu C L, Tan X S, Li F. Study on Search Performance of Long Range Early-Warning Phased Array Radar. CIE International Conference on Radar, Guangzhou, 2016: 1−5
    [11] Haftbaradaran P, Kamarei M, Mofrad R F. The optimal search for multifunction phased array radar. Antennas & Propagation Conference, Loughborough, UK, 2009: 609−612
    [12] Zhou Y, Wang X S, Wang G Y, et al. Study on Boundary-Confined Algorithm of Optimal Beam Position Arrangement for Phased Array Radar. Acta Electronica Sinca, 2004, 32(6): 997−1000
    [13] Hou Z X, Tu G Y, Wu S P, et al. Beam Position Sequence Dynamic Arrangement Algorithm of Anti-saturation-attack in Phased Array Radar. Modern Radar, 2013, 35(6): 42−45
    [14] 张建强, 刘忠, 汪厚祥. 基于搜索论的反舰导弹机动搜捕策略建模方法. 海军工程大学学报, 2015, 27(3): 33−37

    Zhang J Q, Liu Z, Wang H X. Mobile search strategy modeling method of anti-ship missiles based on search theory. Journal of Naval University of Engineering, 2015, 27(3): 33−37
    [15] 唐书娟, 许蕴山, 毕笃彦, 等. 信息引导条件下雷达搜索空域及策略. 西安电子科技大学学报, 2016, 43(1): 173−179

    Tang S J, Xu Y S, Bi D Y, et al. Airspace and searching strategy of radar under the information guiding condition. Journal of Xidian University, 2016, 43(1): 173−179
    [16] 程媛, 迟荣华, 黄少滨, 等. 基于非参数密度估计的不确定轨迹预测方法. 自动化学报, 2019, 45(4): 787−798

    Cheng Y, Chi R H, Huang S B, et al. Uncertain trajectory prediction method using non-parametric density estimation. Acta Automatica Sinica, 2019, 45(4): 787−798
    [17] Aitchison J, Lauder J I. Kernel Density Estimation for Compositional Data. Applied Statistics, 2018, 34(2): 129−137
    [18] Amari, S., Karakida, R. & Oizumi, M. Information Geometry Connecting Wasserstein Distance and Kullback-Leibler Divergence via the Entropy-Relaxed Transportation Problem. Information Geometry, 2017: 1−25
    [19] Zhang F, Shi Y, Ng H, et al. Information Geometry of Generalized Bayesian Prediction Using α-divergences as Loss Functions. IEEE Transactions on Information Theory, 2018, 64(3): 1812−1824
    [20] Moacir P, Josef K, Mateus R, et al. A decision cognizant Kullback-Leibler divergence. Pattern Recognition, 2017, 61: 470−478
    [21] Wu P. Performance Monitoring of MIMO Control System Using Kullback-Leibler Divergence. The Canadian Journal of Chemical Engineering, 2018, 96(7): 1559−1565
    [22] 喻晨龙, 谭贤四, 曲智国, 等. 临近空间升力式再入飞行器跳跃空域预测. 装甲兵工程学院学报, 2018, 32(1): 61−65+71 doi: 10.3969/j.issn.1672-1497.2018.01.011

    Yu C L, Tan X S, Qu Z G, et al. Jumping Airspace Prediction for Near-space Lifting-reentry Vehicle. Journal of Academy of Armored Force Engineering, 2018, 32(1): 61−65+71 doi: 10.3969/j.issn.1672-1497.2018.01.011
  • 加载中
计量
  • 文章访问数:  35
  • HTML全文浏览量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-08
  • 录用日期:  2020-11-18
  • 网络出版日期:  2020-12-18

目录

    /

    返回文章
    返回