2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

双贮备系统冷/温/热贮备模型的优化选择研究

金海波 赵欣越 桑雨

金海波, 赵欣越, 桑雨. 双贮备系统冷/温/热贮备模型的优化选择研究. 自动化学报, 2023, 49(9): 2003−2018 doi: 10.16383/j.aas.c200533
引用本文: 金海波, 赵欣越, 桑雨. 双贮备系统冷/温/热贮备模型的优化选择研究. 自动化学报, 2023, 49(9): 2003−2018 doi: 10.16383/j.aas.c200533
Jin Hai-Bo, Zhao Xin-Yue, Sang Yu. Research on optimal selection for cold/warm/hot-standby patterns of dual-standby systems. Acta Automatica Sinica, 2023, 49(9): 2003−2018 doi: 10.16383/j.aas.c200533
Citation: Jin Hai-Bo, Zhao Xin-Yue, Sang Yu. Research on optimal selection for cold/warm/hot-standby patterns of dual-standby systems. Acta Automatica Sinica, 2023, 49(9): 2003−2018 doi: 10.16383/j.aas.c200533

双贮备系统冷/温/热贮备模型的优化选择研究

doi: 10.16383/j.aas.c200533
基金项目: 国家自然科学基金(61602226, 62173171), 辽宁省自然科学基金(2022-MS-397)资助
详细信息
    作者简介:

    金海波:辽宁工程技术大学软件学院副教授. 2014年获大连理工大学博士学位. 主要研究方向为复杂系统可靠性分析, 异常检测, 优化维护维修策略制定. 本文通信作者. E-mail: jinhaibo@lntu.edu.cn

    赵欣越:辽宁工程技术大学软件学院硕士研究生. 主要研究方向为智能信息处理, 贮备系统可靠性分析, 基于机器学习技术的网络安全防护. E-mail: zhaoxy1201@163.com

    桑雨:辽宁工程技术大学电子与信息工程学院副教授. 2012年获大连理工大学博士学位. 主要研究方向为人工智能与计算机视觉. E-mail: sangyu2008bj@sina.com

Research on Optimal Selection for Cold/Warm/Hot-standby Patterns of Dual-standby Systems

Funds: Supported by National Natural Science Foundation of China (61602226, 62173171) and Natural Science Foundation of Liaoning Province (2022-MS-397)
More Information
    Author Bio:

    JIN Hai-Bo Associate professor at the School of Software, Liaoning Technical University. He received his Ph.D. degree from Dalian University of Technology in 2014. His research interest covers reliability analysis for complex systems, anomaly detection, optimal maintenance, and repair strategy making. Corresponding author of this paper

    ZHAO Xin-Yue Master student at the School of Software, Liaoning Technical University. Her research interest covers intelligent information processing, reliability analysis of standby systems, and network security protection based on machine learning technology

    SANG Yu Associate professor at the School of Electronics and Information Engineering, Liaoning Technical University. He received his Ph.D. degree from Dalian University of Technology in 2012. His research interest covers artificial intelligent and computer vision

  • 摘要: 对运行设备安装双贮备设备是实现系统高可靠性的有效方法. 在双贮备系统冷/温/热三种贮备模型中, 选择哪种贮备模型对系统性能指标和经济指标均有重要影响, 因此对如何选择双贮备系统的贮备模型从而使系统性能最优或经济效益最大的问题进行研究具有现实意义. 而现有研究成果很少涉及双贮备系统贮备模型的优化选择问题. 为此, 本文创新性地提出一种确定双贮备系统最优贮备模型的选择方法. 分别建立系统冷/温/热贮备模型, 分析每个模型的系统状态及系统半Markov核函数, 利用Markov更新方程、Laplace变换以及Laplace-Stieltjes变换技术推导系统稳态可用度、稳态平均维修次数、维修人员稳态忙期概率以及冷贮备模型的平均激活时间, 并从经济角度给出系统单位时间内的净收益函数. 最后分别以性能指标和经济指标作为研究目标, 通过模型对比分析给出不同条件下的系统贮备模型的优化选择算法, 并对每个研究目标下的优化选择算法进行实例计算. 计算结果表明以不同性能指标和不同费用作为参考得出的最优贮备模型不尽相同, 从而验证了所提方法能够有效地确定不同衡量标准下的系统最优贮备模型.
  • 图  1  冷贮备系统状态转移图

    Fig.  1  State transition diagram of the cold-standby system

    图  2  温贮备系统状态转移图

    Fig.  2  State transition diagram of the warm-standby system

    图  3  双贮备冗余控制系统

    Fig.  3  Redundancy control system with dual-standby device

    图  4  ${\lambda _1}$对三个模型的稳态可用度的影响

    Fig.  4  Impact of ${\lambda _1}$ on steady-state available of the three models

    图  5  运行设备维修率对冷、热贮备系统中维修人员稳态忙期概率的影响

    Fig.  5  Impact of repair rates for the working device on steady-state probability of repairmen busy for cold, hot-standby system

    图  6  运行设备和温贮备设备的维修率对温贮备系统中维修人员稳态忙期概率的影响

    Fig.  6  Impact of repair rates for the working and warm-standby devices on steady-state probability of repairmen busy for warm-standby system

    图  7  设备维修率对冷、热贮备系统稳态平均维修次数的影响

    Fig.  7  Impact of repair rate on mean repair number of the cold, hot-standby systems in steady-state

    图  8  运行设备的维修率和温贮备设备的失效率对系统稳态平均维修次数的影响

    Fig.  8  Impact of repair rate of the working device and failure rate of the warm-standby device on repair number of the system in steady-state

    表  1  模型中主要变量说明

    Table  1  Main variables involved in models

    变量符号变量含义
    $\lambda$运行设备失效率
    $\lambda _1$温贮备设备失效率
    X冷贮备模型中设备运行时的寿命
    Z冷贮备模型中设备失效后的维修时间
    Xi温贮备模型中第 i 个设备运行时的寿命
    Yi温贮备模型中第 i 个设备贮备时的寿命
    Zi温贮备模型中第 i 个设备失效后的维修时间
    μi系统在状态$S_i $的平均停留时间
    Qij(t)系统从进入状态$S_i $开始经过时间$ t $后, 直接进入状态$S_j $的概率分布函数
    Qij(k)(t)系统从进入状态$S_i $开始经过时间t后, 中间经过状态$S_k$后, 再进入状态$S_j $的概率分布函数
    qij(t)Qij(t) 的导数, 系统由状态$S_i $到状态$S_j $的转移率
    $F( t;\lambda)$参数为$ \lambda $的指数分布函数
    $G(t)$,${G_1}(t)$分别为运行设备失效后和温贮备设备失效后的维修时间分布函数
    W(t)激活时间分布函数
    $P_i(t) $系统在状态$S_i $的存活函数, 即$P_i(t)=P\{X > t \}$
    $F^*(s)$函数$F(t) $经 Laplace 变换后的象函数
    $\hat F(s)$函数$F(t) $经 Laplace-Stieltjes 变换后的象函数
    Ai(t)系统从进入状态$S_i $开始 (t = 0), 在 t 时刻的可用度
    ${\bar A_1}$,${\bar A_2}$,${\bar A_3}$分别为冷、温、热贮备系统稳态可用度
    Bi(t)系统从进入状态$S_i $开始(t = 0), 维修人员在t时刻正在维修(即忙期)的概率
    ${\bar B_1}$,${\bar B_2}$,${\bar B_3}$分别为冷、温、热贮备系统稳态维修概率, 即维修人员忙期稳态概率
    $V_i(t) $系统从进入状态$S_i $开始 (t = 0), 维修人员在(0, $t $) 期间的维修次数
    ${\bar V_1}$,${\bar V_2}$,${\bar V_3}$分别为冷、温、热贮备系统稳态平均维修次数
    ${\omega _i}(t)$系统从进入状态$S_i $开始$(t $= 0), 在 t时刻处于激活状态的概率
    ${\bar \omega _1}$冷贮备系统稳态激活概率
    下载: 导出CSV

    表  2  模型中主要符号说明

    Table  2  Main symbols involved in models

    符号符号含义
    $S_i $系统状态 $( i=0, 1, \cdots )$
    $Op $设备处于运行状态
    $Cs $设备处于冷贮备状态
    $Ws $设备处于温贮备状态
    $Fr $运行设备失效后处于维修状态
    $Fr1 $温贮备设备失效后处于维修状态
    $FR $失效后的运行设备继续维修的状态
    $FR1 $失效后的温贮备设备继续维修的状态
    $Fwr $运行设备失效后处于等待维修状态
    $Fwr1 $温贮备设备失效后处于等待维修状态
    $Fra $正在维修的设备暂停维修的状态
    $Csa $冷贮备设备处于被激活状态
    下载: 导出CSV

    表  3  系统稳态可用度

    Table  3  System steady-state availability

    系统模型
    模型 Ⅰ模型 Ⅱ模型 Ⅲ
    ${\bar A_i}$1.00000.99670.9845
    下载: 导出CSV

    表  4  维修人员忙期稳态概率

    Table  4  Steady-state probability of repairmen busy

    系统模型
    模型 Ⅰ模型 Ⅱ模型 Ⅲ
    ${\bar B_i}$0.01100.01310.0323
    下载: 导出CSV

    表  5  系统稳态平均维修次数

    Table  5  Mean repair number of the system in steady-state

    系统模型
    模型 Ⅰ模型 Ⅱ模型 Ⅲ
    ${\bar V_i}$0.000560.000770.00170
    下载: 导出CSV
  • [1] Kim H, Kim P. Reliability models for a nonrepairable system with heterogeneous components having a phase-type time-to-failure distribution. Reliability Engineering and System Safety, 2017, 159: 37-46
    [2] 尹东亮, 胡涛, 陈童, 谢经伟. 考虑多维修台异步多重休假的温贮备冗余系统可靠性模型. 控制与决策, 2020, 35(4): 973−984 doi: 10.13195/j.kzyjc.2018.0946

    Yin Dong-Liang, Hu Tao, Chen Tong, Xie Jing-Wei. Reliability analysis for warm standby redundancy system considering multiple asynchronous vacations of multiple maintenance stations. Control and Decision, 2020, 35(4): 973−984 doi: 10.13195/j.kzyjc.2018.0946
    [3] Castellan S, Menis R, Tessarolo A, Luise F, Mazzuca T. A review of power electronics equipment for all-electric ship MVDC power systems. International Journal of Electrical Power & Energy Systems, 2018, 96: 306−323
    [4] Roy A, Gupta N. Reliability of a coherent system equipped with two cold standby components. Metrika, 2020, 83(6): 677−697 doi: 10.1007/s00184-019-00752-3
    [5] Zhai Q Q, Xing L D, Peng R, Yang J. Multi-valued decision diagram-based reliability analysis of k-out-of-n cold standby systems subject to scheduled backups. IEEE Transactions on Reliability, 2015, 64(4): 1310−1324 doi: 10.1109/TR.2015.2404891
    [6] Coppit D, Sullivan K J, Dugan J B. Formal semantics of models for computational engineering: A case study on dynamic fault trees. In: Proceedings of the 11th International Symposium on Software Reliability Engineering. ISSRE 2000. San Jose, USA: IEEE, 2000. 270−282
    [7] Levitin G, Xing L D, Dai Y S. Heterogeneous non-repairable warm standby systems with periodic inspections. IEEE Transactions on Reliability, 2016, 65(1): 394−409 doi: 10.1109/TR.2015.2455976
    [8] Peng R, Tannous O, Xing L D, Xie M. Reliability of smart grid systems with warm standby spares and imperfect coverage. In: Proceedings of the 1st International Conference on Smart Grids and Green IT Systems. Porto, Portugal: SciTePress, 2012. 61−66
    [9] Cruyt A L M, Ghobbar A A, Curran R. A value-based assessment method of the supportability for a new aircraft entering into service. IEEE Transactions on Reliability, 2014, 63(4): 817−829 doi: 10.1109/TR.2014.2335972
    [10] Zhao J B, Li Y K, Yang G F, Jiang K, Lin H R, Ade H, et al. Efficient organic solar cells processed from hydrocarbon solvents. Nature Energy, 2016, 1(2): Article No. 15027
    [11] Elerath J, Pecht M. A highly accurate method for assessing reliability of redundant arrays of inexpensive disks (RAID). IEEE Transactions on Computers, 2009, 58(3): 289−299 doi: 10.1109/TC.2008.163
    [12] Hsieh C C, Hsieh Y C. Reliability and cost optimization in distributed computing systems. Computers & Operations Research, 2003, 30(8): 1103−1119
    [13] Johnson B W, Julich P M. Fault tolerant computer system for the A129 helicopter. IEEE Transactions on Aerospace and Electronic Systems, 1985, AES-21(2): 220−229 doi: 10.1109/TAES.1985.310619
    [14] 陆宁云, 陈闯, 姜斌, 邢尹. 复杂系统维护策略最新研究进展: 从视情维护到预测性维护. 自动化学报, 2021, 47(1): 1−17

    Lu Ning-Yun, Chen Chuang, Jiang Bin, Xing Yin. Latest progress on maintenance strategy of complex system: From condition-based maintenance to predictive maintenance. Acta Automatica Sinica, 2021, 47(1): 1−17
    [15] 袁烨, 张永, 丁汉. 工业人工智能的关键技术及其在预测性维护中的应用现状. 自动化学报, 2020, 46(10): 2013−2030 doi: 10.16383/j.aas.c200333

    Yuan Ye, Zhang Yong, Ding Han. Research on key technology of industrial artificial intelligence and its application in predictive maintenance. Acta Automatica Sinica, 2020, 46(10): 2013−2030 doi: 10.16383/j.aas.c200333
    [16] Chen Y, Wang Z, Li Y Y, Kang R, Mosleh A. Reliability analysis of a cold-standby system considering the development stages and accumulations of failure mechanisms. Reliability Engineering & System Safety, 2018, 180: 1−12
    [17] Zhong C Q, Jin H B. A novel optimal preventive maintenance policy for a cold standby system based on semi-Markov theory. European Journal of Operational Research, 2014, 232(2): 405−411 doi: 10.1016/j.ejor.2013.07.020
    [18] Wang J Y, Ye J M. A new repair model and its optimization for cold standby system. Operational Research, 2022, 22(1): 105−122 doi: 10.1007/s12351-020-00545-x
    [19] 陈童, 谢经伟, 狄鹏, 尹东亮. 考虑两种失效竞争的多状态冷贮备系统可靠性模型. 航空学报, 2019, 40(3): 110−125

    Chen Tong, Xie Jing-Wei, Di Peng, Yin Dong-Liang. Reliability analysis of multi-state cold standby system with two competing failures. Acta Aeronautica et Astronautica Sinica, 2019, 40(3): 110−125
    [20] 曹晋华, 程侃. 两部件热贮备系统的可靠性分析. 应用数学学报, 1980, 3(2): 147−160

    Chao Jin-Hua, Cheng Kan. Reliability analysis of two - component thermal storage system. Acta Mathematicae Applicatae Sinica, 1980, 3(2): 147−160
    [21] Patowary M, Panda G, Deka B C. Reliability modeling of microgrid system using hybrid methods in hot standby mode. IEEE Systems Journal, 2019, 13(3): 3111−3119 doi: 10.1109/JSYST.2019.2925453
    [22] Huang W, Loman J, Song T. A reliability model of a warm standby configuration with two identical sets of units. Reliability Engineering & System Safety, 2015, 133: 237−245
    [23] Ma X Y, Liu B, Yang L, Peng R, Zhang X D. Reliability analysis and condition-based maintenance optimization for a warm standby cooling system. Reliability Engineering and System Safety, 2020, 193: Article No. 106588
    [24] 尹东亮, 胡涛, 陈童. 考虑维修优先权的多状态温贮备系统可靠性模型. 控制与决策, 2018, 33(11): 2029−2036 doi: 10.13195/j.kzyjc.2017.0718

    Yin Dong-Liang, Hu Tao, Chen Tong. Reliability analysis for multi-state warm standby system with repair priority. Control and Decision, 2018, 33(11): 2029−2036 doi: 10.13195/j.kzyjc.2017.0718
    [25] 刘宝亮, 温艳清, 丰月姣. 修理设备和开关不完全可靠的温贮备可修系统的可靠性. 运筹与管理, 2018, 27(10): 113−117

    Liu Bao-Liang, Wen Yan-Qing, Feng Yue-Jiao. Reliability for warm standby repairable system with unreliable server and switching failure. Operations Research and Management Science, 2018, 27(10): 113−117
    [26] Kuo C C, Ke J C. Comparative analysis of standby systems with unreliable server and switching failure. Reliability Engineering & System Safety, 2016, 145: 74−82
    [27] Guo L, Gui W H. Statistical inference of the reliability for generalized exponential distribution under progressive type-II censoring schemes. IEEE Transactions on Reliability, 2018, 67(2): 470−480 doi: 10.1109/TR.2018.2800039
    [28] Wang K H, Liu Y C, Pearn W L. Cost benefit analysis of series systems with warm standby components and general repair time. Mathematical Methods of Operations Research, 2005, 61(2): 329−343 doi: 10.1007/s001860400385
  • 加载中
图(8) / 表(5)
计量
  • 文章访问数:  950
  • HTML全文浏览量:  220
  • PDF下载量:  119
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-11
  • 录用日期:  2020-08-28
  • 网络出版日期:  2023-08-18
  • 刊出日期:  2023-09-26

目录

    /

    返回文章
    返回