2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于全身力矩控制的双腿轮机器人跳跃方法研究

辛亚先 李贻斌 柴汇 荣学文 李彬

辛亚先, 李贻斌, 柴汇, 荣学文, 李彬. 基于全身力矩控制的双腿轮机器人跳跃方法研究. 自动化学报, 2023, 49(8): 1635−1644 doi: 10.16383/j.aas.c200486
引用本文: 辛亚先, 李贻斌, 柴汇, 荣学文, 李彬. 基于全身力矩控制的双腿轮机器人跳跃方法研究. 自动化学报, 2023, 49(8): 1635−1644 doi: 10.16383/j.aas.c200486
Xin Ya-Xian, Li Yi-Bin, Chai Hui, Rong Xue-Wen, Li Bin. Research on jumping method of two wheeled-leg robot based on whole-body torque control. Acta Automatica Sinica, 2023, 49(8): 1635−1644 doi: 10.16383/j.aas.c200486
Citation: Xin Ya-Xian, Li Yi-Bin, Chai Hui, Rong Xue-Wen, Li Bin. Research on jumping method of two wheeled-leg robot based on whole-body torque control. Acta Automatica Sinica, 2023, 49(8): 1635−1644 doi: 10.16383/j.aas.c200486

基于全身力矩控制的双腿轮机器人跳跃方法研究

doi: 10.16383/j.aas.c200486
基金项目: 国家自然科学基金(62203278, 61973185, 61973135), 山东省自然科学基金(ZR2017MEE033), 山东省高等学校青创科技支持计划(2019KJN011)资助
详细信息
    作者简介:

    辛亚先:山东大学控制科学与工程学院博士研究生. 主要研究方向为多腿及多臂机器人全身控制. E-mail: xinyaxian1990@126.com

    李贻斌:山东大学控制科学与工程学院教授. 主要研究方向为机器人学, 机电一体化, 智能控制, 智能车辆. E-mail: liyb@sdu.edu.cn

    柴汇:山东大学控制科学与工程学院副教授. 主要研究方向为机器人学与智能控制. 本文通信作者.E-mail: ch2200@sina.com

    荣学文:山东大学控制科学与工程学院教授. 主要研究方向为仿生机器人机构设计与优化, 液压伺服传动技术. E-mail: rongxw@sdu.edu.cn

    李彬:齐鲁工业大学(山东省科学院)数学与统计学院副教授. 主要研究方向为神经网络算法与腿足式机器人步态规划. E-mail: ribbenlee@126.com

Research on Jumping Method of Two Wheeled-leg Robot Based on Whole-body Torque Control

Funds: Supported by National Natural Science Foundation of China (62203278, 61973185, 61973135), Shandong Province Natural Science Foundation (ZR2017MEE033), and Development Plan of Youth Innovation Team in Colleges and Universities of Shandong Province (2019KJN011)
More Information
    Author Bio:

    XIN Ya-Xian Ph.D. candidate the at the School of Control Science and Engineering, Shandong University. Her research interest covers whole body control of multi-leg and multi-arm robot

    LI Yi-Bin Professor at the School of Control Science and Engineering, Shandong University. His research interest covers robotics, mechatronics, intelligent control, and intelligent vehicles

    CHAI Hui Associate professor at the School of Control Science and Engineering, Shandong University. His research interest covers robotics and intelligent control. Corresponding author of this paper

    RONG Xue-Wen Professor at the School of Control Science and Engineering, Shandong University. His research interest covers design and optimization of bionic robot mechanism, and hydraulic servo transmission

    LI Bin Associate professor at the School of Mathematics and Statistics, Qilu University of Technology (Shandong Academy of Sciences). His research interest covers algorithms for neural networks and gait planning of legged robots

  • 摘要: 双腿轮机器人由于内在不稳定性以及强耦合非线性特性, 其运动控制尤其是高动态运动控制非常困难. 为此, 提出基于最优力分配的全身力矩控制框架, 可同时实现双腿轮机器人的自平衡与躯干位姿控制; 为提高双腿轮机器人在高速运动时跨越垂直障碍物的能力, 提出应对垂直障碍的跳跃动作规划方法, 并基于全身力矩控制框架进行控制与实现; 通过分析简化的轮式倒立摆模型, 得到腾空时飞轮转动对俯仰姿态的动力学影响, 实现腾空阶段俯仰姿态的调整. 设置连续跳跃仿真实验与有无飞轮调整的俯仰姿态对比实验, 其仿真结果证明所提方法的有效性与鲁棒性.
  • 图  1  双腿轮机器人简化模型图

    Fig.  1  The simplified model of the two wheeled-leg robot

    图  2  躯干与足端矢状面轨迹示意图

    Fig.  2  The trajectory schematic of the torso and feet in the sagittal plane

    图  3  总体控制框图

    Fig.  3  Overall control frame

    图  4  不同离地高度下躯干与足端纵向位置曲线

    Fig.  4  Longitudinal position curves of the torso and feet at different ground clearance

    图  5  机器人跳跃过程仿真截图

    Fig.  5  The simulation snapshot of the jumping process

    图  6  躯干姿态曲线

    Fig.  6  Curve of torso posture

    图  7  水平速度跟随曲线

    Fig.  7  Curve of horizontal speed

    图  8  躯干虚拟广义力

    Fig.  8  Virtual generalized force of the torso

    图  9  躯干与足端纵向位置曲线

    Fig.  9  Longitudinal position curves of the torso and feet

    图  10  腿轮末端输出广义力曲线

    Fig.  10  Generalized force curves outputted by leg-wheel

    图  11  关节力矩曲线

    Fig.  11  Joint torque curves

    图  12  俯仰角对比曲线图

    Fig.  12  Comparison of pitch angle curves

    表  1  跳跃参数设置

    Table  1  Parameters of the jump motion

    参数参数含义
    H0正常行走时躯干站立高度在${\Sigma _O}$中的表示
    H1腾空瞬间躯干站立高度在${\Sigma _O}$中的表示
    Hpt足端最大离地距离在${\Sigma _O}$中的表示
    Hs足端最大收缩量在${\Sigma _B}$中的表示
    下载: 导出CSV
  • [1] 高志伟, 代学武, 郑志达. 基于运动控制和频域分析的移动机器人能耗最优轨迹规划. 自动化学报, 2020, 46(5): 934-945 doi: 10.16383/j.aas.c180399

    Gao Zhi-Wei, Dai Xue-Wu, Zheng Zhi-Da. Optimal energy consumption trajectory planning for mobile robot based on motion control and frequency domain analysis. Acta Automatica Sinica, 2020, 46(5): 934-945 doi: 10.16383/j.aas.c180399
    [2] Bjelonic M, Bellicoso C D, De Viragh Y, Sako D, Tresoldi F D, Jenelten F, et al. Keep Rollin’—whole-body motion control and planning for wheeled quadrupedal robots. IEEE Robotics and Automation Letters, 2019, 4(2): 2116-2123 doi: 10.1109/LRA.2019.2899750
    [3] Dynamics B. Introducing handle [Online], available: https://youtu.be/-7xvqQeoA8c, February 28, 2017
    [4] Klemm V, Morra A, Salzmann C, Tschopp F, Bodie K, Gulich L, et al. Ascento: A two-wheeled jumping robot. In: Proceedings of the International Conference on Robotics and Automation (ICRA). Montreal, Canada: IEEE, 2019. 7515−7521
    [5] Klemm V, Morra A, Gulich L, Mannhart D, Rohr D, Kamel M, et al. LQR-assisted whole-body control of a wheeled bipedal robot with kinematic loops. IEEE Robotics and Automation Letters, 2020, 5(2): 3745-3752 doi: 10.1109/LRA.2020.2979625
    [6] Handle[Online], available: https://baijiahao.baidu.com/s?id=1629321730842384760 &wfr=spider&for=pc, March 29, 2019
    [7] Wang H F, Zheng Y F, Jun Y, Oh P. DRC-Hubo walking on rough terrains. In: Proceedings of the IEEE International Conference on Technologies for Practical Robot Applications (TePRA). Woburn, USA: IEEE, 2014. 1−6
    [8] Zhang S, Gao J Y, Duan X G, Li H, Yu Z G, Chen X C, et al. Trot pattern generation for quadruped robot based on the ZMP stability margin. In: Proceedings of the ICME International Conference on Complex Medical Engineering. Beijing, China: IEEE, 2013. 608−613
    [9] Zhao D, Revzen S. Multi-legged steering and slipping with low DoF hexapod robots. Bioinspiration and Biomimetics, 2020, 15(4): Article No. 045001
    [10] Vukobratović M, Borovac B. Zero-moment point — thirty five years of its life. International Journal of Humanoid Robotics, 2004, 1(1): 157-173 doi: 10.1142/S0219843604000083
    [11] Messuri D, Klein C. Automatic body regulation for maintaining stability of a legged vehicle during rough-terrain locomotion. IEEE Journal on Robotics and Automation, 1985, 1(3): 132-141 doi: 10.1109/JRA.1985.1087012
    [12] Hirose S, Tsukagoshi H, Yoneda K. Normalized energy stability margin and its contour of walking vehicles on rough terrain. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA). Seoul, South Korea: IEEE, 2001. 181−186
    [13] Liu L X, Guo R W, Ji J C, Miao Z H, Zhou J. Practical consensus tracking control of multiple nonholonomic wheeled mobile robots in polar coordinates. International Journal of Robust and Nonlinear Control, 2020, 30(10): 3831-3847 doi: 10.1002/rnc.4967
    [14] Xin Y X, Rong X W, Li Y B, Li B, Chai H. Movements and balance control of a wheel-leg robot based on uncertainty and disturbance estimation method. IEEE Access, 2019, 7: 133265-133273 doi: 10.1109/ACCESS.2019.2940487
    [15] Abeygunawardhana P K W, Murakami T. Vibration suppression of two-wheel mobile manipulator using resonance-ratio-control-based null-space control. IEEE Transactions on Industrial Electronics, 2010, 57(12): 4137-4146 doi: 10.1109/TIE.2010.2044115
    [16] Shihabudheen K V, George N, Chinmaya K A, Thankachan J. Stability control and trajectory tracking of two wheeled mobile manipulator. In: Proceedings of the Annual IEEE India Conference (INDICON). New Delhi, India: IEEE, 2015. 1−6
    [17] Xin S Y, You Y W, Zhou C X, Fang C, Tsagarakis N. A torque-controlled humanoid robot riding on a two-wheeled mobile platform. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Vancouver, Canada: IEEE, 2017. 1435−1442
    [18] Yue M, An C, Sun J Z. An efficient model predictive control for trajectory tracking of wheeled inverted pendulum vehicles with various physical constraints. International Journal of Control, Automation and Systems, 2018, 16(1): 265-274 doi: 10.1007/s12555-016-0393-z
    [19] Park J, Haan J, Park F C. Convex optimization algorithms for active balancing of humanoid robots. IEEE Transactions on Robotics, 2007, 23(4): 817-822 doi: 10.1109/TRO.2007.900639
    [20] Rocchi A, Hoffman E M, Caldwell D G, Tsagarakis N G. OpenSoT: A whole-body control library for the compliant humanoid robot COMAN. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA). Seattle, USA: IEEE, 2015. 6248−6253
    [21] Neunert M, Stauble M, Giftthaler M, Bellicoso C D, Carius J, Gehring C, et al. Whole-body nonlinear model predictive control through contacts for quadrupeds. IEEE Robotics and Automation Letters, 2018, 3(3): 1458-1465 doi: 10.1109/LRA.2018.2800124
    [22] Chen T, Sun X B, Xu Z, Li Y B, Rong X W, Zhou L L. A trot and flying trot control method for quadruped robot based on optimal foot force distribution. Journal of Bionic Engineering, 2019, 16(4): 621-632 doi: 10.1007/s42235-019-0050-3
    [23] Kim D, Di Carlo J, Katz B, Bledt G, Kim S. Highly dynamic quadruped locomotion via whole-body impulse control and model predictive control. arXiv preprint arXiv: 1909.06586v1, 2019.
    [24] Dynamics B. Parkour atlas [Online], available: https://youtu.be/LikxFZZO2sk, October 12, 2018
    [25] Xin Y X, Chai H, Li Y B, Rong X W, Li B, Li Y Y. Speed and acceleration control for a two wheel-leg robot based on distributed dynamic model and whole-body control. IEEE Access, 2019, 7: 180630-180639 doi: 10.1109/ACCESS.2019.2959333
    [26] HEBI Robotics. IGOR: Wheeled, self-balancing robotic kit from HEBI robotics [Online], available: https://youtu.be/icLyS4RWYjg, September 12, 2019
  • 加载中
图(12) / 表(1)
计量
  • 文章访问数:  1866
  • HTML全文浏览量:  739
  • PDF下载量:  333
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-01
  • 网络出版日期:  2023-07-27
  • 刊出日期:  2023-08-21

目录

    /

    返回文章
    返回