2.793

2018影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于鲁棒加权模糊聚类的污水处理过程监测方法

张瑞垚 周平

张瑞垚, 周平. 基于鲁棒加权模糊聚类的污水处理过程监测方法. 自动化学报, 2020, 46(x): 1−13 doi: 10.16383/j.aas.c200392
引用本文: 张瑞垚, 周平. 基于鲁棒加权模糊聚类的污水处理过程监测方法. 自动化学报, 2020, 46(x): 1−13 doi: 10.16383/j.aas.c200392
Zhang Rui-Yao, Zhou Ping. Robust weighted fuzzy clustering for sewage treatment process monitoring. Acta Automatica Sinica, 2020, 46(x): 1−13 doi: 10.16383/j.aas.c200392
Citation: Zhang Rui-Yao, Zhou Ping. Robust weighted fuzzy clustering for sewage treatment process monitoring. Acta Automatica Sinica, 2020, 46(x): 1−13 doi: 10.16383/j.aas.c200392

基于鲁棒加权模糊聚类的污水处理过程监测方法

doi: 10.16383/j.aas.c200392
基金项目: 国家自然科学基金项目(61890934, 61790572, 61991400), 辽宁省'兴辽英才计划'项目(XLYC1907132), 中央高校基本科研业务费项目(N180802003)
详细信息
    作者简介:

    张瑞垚:东北大学硕士研究生. 于2018年获得东北大学学士学位. 主要研究方向为数据驱动质量监测. E-mail: 1598921837@qq.com

    周平:东北大学教授. 分别于2003年, 2006年, 2013年获得东北大学学士学位、硕士学位和博士学位. 主要研究方向为工业过程运行反馈控制、数据驱动建模与控制等. 本文通信作者. E-mail: zhouping@mail.neu.edu.cn

Robust Weighted Fuzzy Clustering for Sewage Treatment Process Monitoring

Funds: Supported by National Natural Science Foundation of China (61890934, 61890930, 61790572, 61991400), Liaoning Revitalization Talents Program (XLYC1907132), and Fundamental Research Funds for the Central Universities (N180802003)
  • 摘要: 针对非线性强、先验故障知识少、异常工况识别难的污水处理过程监测问题, 提出一种基于鲁棒加权模糊c均值(RoW-FCM)聚类与核偏最小二乘(KPLS)的过程监测方法. 首先, 针对污水处理过程的高维非线性耦合特性, 采用KPLS对高维输入变量进行降维; 其次, 针对传统基于最近邻分配的模糊c均值(FCM)算法对离群点敏感以及存在聚类不平衡簇的问题, 提出充分考虑样本间相互关系的RoW-FCM聚类算法. 通过引入可能性划分矩阵作为权值参数实现不同样本数据的区分加权, 提高了离群点数据聚类的鲁棒性, 同时引入聚类大小控制参数解决不平衡簇的问题. 进一步将RoW-FCM算法对KPLS降维后的得分矩阵进行聚类, 利用聚类得到的隶属度矩阵实现异常工况的检测; 最后, 建立隶属度矩阵与过程变量的回归模型, 并利用得到的变量贡献矩阵描述变量对各个簇的解释程度, 实现异常工况的识别. 数值仿真以及污水处理过程数据实验表明所提方法具有更好的鲁棒性能, 在异常工况检测和识别上具有较好的效果.
  • 图  1  污水处理工艺流程示意图

    Fig.  1  Schematic diagram of sewage treatment process

    图  2  所提监测算法建模策略

    Fig.  2  The proposed monitoring algorithm modeling strategy

    图  3  仿真实验数据及聚类效果图

    Fig.  3  Simulation experiment data and clustering effect diagram

    图  4  不平衡簇测试数据集A(左)与离群点数据集B(右)

    Fig.  4  Unbalanced cluster test data set A (left) and outlier data set B (right)

    图  5  FCM、PCM、PFCM、RoW-FCM聚类效果图

    Fig.  5  FCM、PCM、PFCM、RoW-FCM clustering effect diagram

    图  6  FCM、PCM、PFCM、RoW-FCM聚类效果图

    Fig.  6  FCM、PCM、PFCM、RoW-FCM clustering effect diagram

    图  7  FCM隶属度矩阵

    Fig.  7  FCM membership matrix

    图  8  PCM可能性矩阵

    Fig.  8  PCM possibility matrix

    图  9  PFCM隶属度矩阵

    Fig.  9  PFCM membership matrix

    图  10  RoW-FCM隶属度矩阵

    Fig.  10  RoW-FCM membership matrix

    图  11  异常工况识别结果

    Fig.  11  Recognition results of abnormal conditions

    表  2  FCM、PCM、PFCM、RoW-FCM聚类参数

    Table  2  FCM, PCM, PFCM, RoW-FCM clustering parameters

    FCM PCM PFCM RoW-FCM
    $U_1^{\rm T}$ $U_2^{\rm T}$ $W_1^{\rm T}$ $W_2^{\rm T}$ $U_1^{\rm T}$ $U_2^{\rm T}$ $W_1^{\rm T}$ $W_2^{\rm T}$ $U_1^{\rm T}$ $U_2^{\rm T}$ $W_1^{\rm T}$ $W_2^{\rm T}$
    1 0.973 0.027 0.799 0.798 0.021 0.979 0.026 0.547 0.991 0.009 0.833 0.999
    2 0.991 0.009 0.859 0.858 0.010 0.989 0.032 0.755 0.989 0.011 0.839 0.999
    3 0.995 0.005 0.861 0.860 0.002 0.998 0.032 0.940 1.00 0.000 1.000 1.000
    4 0.967 0.033 0.848 0.848 0.026 0.975 0.032 0.555 0.989 0.011 0.834 0.999
    5 0.988 0.012 0.916 0.916 0.013 0.987 0.042 0.770 0.986 0.014 0.840 0.998
    6 0.012 0.988 0.916 0.917 0.987 0.013 0.770 0.042 0.012 0.988 0.999 0.861
    7 0.009 0.991 0.859 0.860 0.989 0.011 0.755 0.032 0.011 0.989 0.999 0.835
    8 0.005 0.995 0.861 0.862 0.998 0.002 0.940 0.032 0.000 0.999 1.000 0.998
    9 0.033 0.967 0.848 0.849 0.975 0.026 0.555 0.032 0.011 0.989 0.999 0.835
    10 0.027 0.973 0.799 0.800 0.979 0.021 0.547 0.026 0.010 0.990 0.999 0.811
    11 0.500 0.500 0.997 0.997 0.500 0.500 0.125 0.125 0.069 0.931 0.985 0.274
    12 0.500 0.500 0.632 0.632 0.500 0.500 0.026 0.026 0.997 0.004 0.060 0.999
    聚类中心 v1=(-3.616, 0.383) v1=(0.001, 0.369) v1=(-3.736, 0.240) v1=(-3.989, 0.010)
    v2=(3.616, 0.384) v2=(0.007, 0.369) v2=(3.736, 0.240) v2=(3.910, 0.000)
    偏移距离 r1=0.543 r1=4.016 r1=0.357 r1=0.010
    r2=0.543 r2=4.010 r2=0.357 r2=0.090
    下载: 导出CSV

    表  3  影响污水处理过程出水水质的主要过程变量

    Table  3  The main process variables that affect the effluent quality of the sewage treatment process

    编号 符号 变量物理含义 编号 符号 变量物理含义
    1 Qin 进水流量 15 SS,3 反应池3易生物降解有机底物量
    2 SNH,in 进水氨浓度 16 SALK,3 反应池3池碱度
    3 XBH,1 反应池1活性异养菌生物量 17 XBH,4 反应池4活性异养菌生物量
    4 SNO,1 反应池1硝氮浓度 18 XBA,4 反应池4活性自养菌生物量
    5 SS,1 反应池1易生物降解有机底物量 19 SO,4 反应池4溶解氧浓度
    6 SALK,1 反应池1池碱度 20 SNH,4 反应池4氨氮浓度
    7 XBH,2 反应池2活性异养菌生物量 21 SS,4 反应池4易生物降解有机底物量
    8 SNO,2 反应池2硝氮浓度 22 SALK,4 反应池4池碱度
    9 SS,2 反应池2易生物降解有机底物量 23 XBH,5 反应池5活性异养菌生物量
    10 SALK,2 反应池2池碱度 24 XBA,5 反应池5活性自养菌生物量
    11 XBH,3 反应池3活性异养菌生物量 25 SO,5 反应池5溶解氧浓度
    12 XBA,3 反应池3活性自养菌生物量 26 SNH,5 反应池5氨氮浓度
    13 SO,3 反应池3溶解氧浓度 27 SS,5 反应池5易生物降解有机底物量
    14 SNH,3 反应池3氨氮浓度 28 SALK,5 反应池5池碱度
    下载: 导出CSV

    表  4  不同算法的聚类准确度与迭代次数

    Table  4  Clustering accuracy and number of iterations of different algorithms

    工况类型 聚类正确率 聚类收敛迭代次数
    (收敛精度10^-5, 30次仿真)
    FCM PCM PFCM RoW-FCM FCM PCM PFCM RoW-FCM
    正常工况 92.3% 80.8% 93.9% 97.5% 45.1 14 29.1 23.6
    异常工况1 75.0% 6.3% 76.3% 96.0%
    异常工况2 80.3% 3.5% 77.5% 97.0%
    下载: 导出CSV

    表  5  异常工况识别结果表(其中加粗的数值表示与异常工况关联变量的贡献值)

    Table  5  Abnormal condition recognition result table (the bolded value indicates the contribution value of the variable associated with the abnormal condition)

    编号 正常工况 异常工况1 异常工况2 编号 正常工况 异常工况1 异常工况2
    1 0.133 0.339 0.528 15 0.254 0.465 0.281
    2 0.150 0.321 0.530 16 0.297 0.255 0.448
    3 0.454 0.481 0.065 17 0.450 0.464 0.086
    4 0.453 0.395 0.152 18 0.354, 0.424 0.223
    5 0.093 0.577 0.331 19 0.238 0.260 0.503
    6 0.305 0.247 0.448 20 0.124, 0.352 0.524
    7 0.456 0.477 0.067 21 0.236 0.482 0.283
    8 0.010 0.307 0.683 22 0.281 0.245 0.475
    9 0.241 0.473 0.286 23 0.446 0.458 0.096
    10 0.361 0.290 0.349 24 0.352 0.418 0.230
    11 0.453 0.471 0.076 25 0.052 0.310 0.639
    12 0.353 0.429 0.218 26 0.118 0.314 0.568
    13 0.255 0.167 0.578 27 0.229 0.482 0.289
    14 0.208 0.425 0.367 28 0.291 0.259 0.450
    下载: 导出CSV
  • [1] 蒙西, 乔俊飞, 韩红桂. 基于类脑模块化神经网络的污水处理过程关键出水参数软测量. 自动化学报, 2019, 45(5): 906−919 doi: 10.16383/j.aas.2018.c170497

    MENG Xi, QIAO Jun-Fei, HAN Hong-Gui. Soft Measurement of Key Effluent Parameters in Wastewater Treatment Process Using Brain-like Modular Neural Networks. ACTA AUTOMATICA SINICA, 2019, 45(5): 906−919 doi: 10.16383/j.aas.2018.c170497
    [2] 乔俊飞, 韩改堂, 周红标. 基于知识的污水生化处理过程智能优化方法. 自动化学报, 2017, 43(6): 1038−1046

    Qiao Jun-Fei, Han Gai-Tang, Zhou Hong-Biao. Knowledge-based intelligent optimal control for wastewater biochemical treatment Process. Acta Automatica Sinica, 2017, 43(6): 1038−1046
    [3] 张帅, 周平. 污水处理过程递推双线性子空间建模及无模型自适应控制. 自动化学报, DOI: 10.16383/j.aas.c190514

    Zhang Shuai, Zhou Ping. Recursive bilinear subspace modeling and model-free adaptive control of wastewater treatment. Acta Automatica Sinica, DOI: 10.16383/j.aas.c190514.
    [4] Cheng T, Dairi A, Harrou F, Sun Y and Leiknes T. Monitoring influent conditions of wastewater treatment plants by nonlinear data-based techniques. IEEE Access, 2019, 7: 108827−108837 doi: 10.1109/ACCESS.2019.2933616
    [5] Han Hong-Gui, Qiao Jun-Fei. Hierarchical neural network modeling approach to predict sludge volume index of wastewater treatment process. IEEE Transactions on Control Systems Technology, 2013, 21(6): 2423−2431 doi: 10.1109/TCST.2012.2228861
    [6] 韩红桂, 伍小龙, 张璐, 乔俊飞. 城市污水处理过程异常工况识别和抑制研究. 自动化学报, 2018, 44(11): 1971−1984

    Han Hong-Gui, Wu Xiao-Long, Zhang Lu, Qiao Jun-Fei. Identification and suppression of abnormal conditions in municipal wastewater treatment process. Acta Automatica Sinica, 2018, 44(11): 1971−1984
    [7] Liu Hong-Bin, Zhang Hao, Zhang Yu-Cheng, Zhang Feng-Shan and Huang Ming-Zhi. Modeling of wastewater treatment processes using dynamic Bayesian networks based on fuzzy PLS. IEEE Access, 2020, 8: 92129−92140
    [8] Fuente M J, Vega P. Neural networks applied to fault detection of a biotechnological process. Engineering Applications of Artificial Intelligence, 1999, 12(5): 569−584 doi: 10.1016/S0952-1976(99)00028-7
    [9] 范昕炜, 杜树新, 吴铁军. 粗SVM分类方法及其在污水处理过程中的应用. 控制与决策, 2004, (05): 573−576 doi: 10.3321/j.issn:1001-0920.2004.05.022

    Fan Xin-Wei, Du Shu-Xin, Wu Tie-Jun. Rough support vector machine and its application to wastewater treatment processes. Control and Decision, 2004, (05): 573−576 doi: 10.3321/j.issn:1001-0920.2004.05.022
    [10] 刘乙奇, 李艳, 孙宗海, 黄道平. 面向污水处理过程因子分析故障诊断方法的研究. 控制工程, 2015, 22(3): 447−451

    Liu Yi-Qi, Li Yan, Sun Zong-Hai, Huang Dao-Ping. Research on fault diagnosis of wastewater treatment process based on factor analysis. Control Engineering of China, 2015, 22(3): 447−451
    [11] 慈嘉伟, 罗健旭. 基于加权模糊聚类的污水处理过程故障检测. 华东理工大学学报(自然科学版), 2018, 44(04): 504−510

    Ci Jia-Wei, Luo Jian-Xu. Fault detection in sewage treatment process based on weighted fuzzy clustering algorithm. Journal of East China University of Science and Technology(Natural Science Edition), 2018, 44(04): 504−510
    [12] 康韦晓. 基于马氏距离的PFCM算法的非线性系统故障诊断方法. [Master dissertation], 哈尔滨工业大学, 2016

    Kang Wei-Xiao. Fault diagnosis method for nonlinear system based on PFCM algorithm with Mahalanobis distance. [Master dissertation], Harbin Institute of Technology, 2013
    [13] Teppola P, Minkkinen P. Possibilistic and fuzzy c-means clustering for process monitoring in an activated sludge waste-water treatment plant. Journal of Chemometrics, 1999, 13(3-4): 445−459 doi: 10.1002/(SICI)1099-128X(199905/08)13:3/4<445::AID-CEM557>3.0.CO;2-W
    [14] Qin S J. Statistical process monitoring: basics and beyond. Journal of Chemometrics, 2003, 17(8-9): 480−502 doi: 10.1002/cem.800
    [15] Zhou P, Zhang R Y, Xie J, Liu J P, Wang H, Chai T Y. Data-driven monitoring and diagnosing of abnormal furnace conditions in blast furnace ironmaking: an integrated PCA-ICA method. IEEE Transactions on Industrial Electronics, 2020 doi: 10.1109/TIE.2020.2967708
    [16] Dunia R, Qin S J, Edgar T F, McAvoy T J. Identification of faulty sensors using principal component analysis. AICHE Journal, 2010, 42(10): 2797−2812
    [17] Choi S W, Lee C, Lee J M, Park J H, Lee I B. Fault detection and identification of nonlinear processes based on kernel PCA. Chemometrics & Intelligent Laboratory Systems, 2005, 75(1): 55−67
    [18] Xu H B, Chen G H, Wang X H. Fault identification of bearings based on bispectrum distribution of ARMA model and FCM method. Journal of South China University of Technology, 2012, 40(7): 78−82+89
    [19] Khormali, A O, Shoorehdeli, M A. Gas turbine fault detection and identification by using fuzzy clustering methods, 2014 Second RSI/ISM International Conference on Robotics and Mechatronics. Tehran, Iran: 2014. 070−075
    [20] Bezdek J C, Ehrlich R, Full W. FCM: The fuzzy c-means clustering algorithm. Computers & Geosciences, 1984, 10(2): 191−203
    [21] Krishnapuram R, Keller J M. A possibilistic approach to clustering. IEEE Transactions on Fuzzy Systems, 1993, 1(2): 98−110 doi: 10.1109/91.227387
    [22] Zhang X, Pan W, Wu Z, Chen J, Mao Y, Wu R. Robust Image Segmentation Using Fuzzy C-Means Clustering With Spatial Information Based on Total Generalized Variation. IEEE Access, 2020, 8: 95681−95697 doi: 10.1109/ACCESS.2020.2995660
    [23] Krinidis S, Chatzis V. A robust fuzzy local information c-means clustering algorithm. IEEE Transactions on Image Processing, 2010, 19(5): 1328−1337 doi: 10.1109/TIP.2010.2040763
    [24] Barni M, Capellini V, Mecocci A. Comments on a possibilistic approach to clustering. IEEE Transactions on Fuzzy Systems, 1996, 4(3): 393−396 doi: 10.1109/91.531780
    [25] Timm H, Borgelt C, Döring C, Kruse R. An extension to possibilistic fuzzy cluster analysis. Fuzzy Sets and Systems, 2004, 147(1): 3−16 doi: 10.1016/j.fss.2003.11.009
    [26] Pal N R, Pal K, Keller J M, Bezdek J C. A possibilistic fuzzy c-means clustering algorithm. IEEE Transactions on Fuzzy Systems, 2005, 13(4): 517−530 doi: 10.1109/TFUZZ.2004.840099
    [27] Miyamoto S, Ichihashi H, Honda K. Algorithms for Fuzzy Clustering-Methods in c-Means Clustering with Applications. Berlin: Springer-Verlag, 2008
    [28] Komazaki Y, Miyamoto S. Variables for controlling cluster sizes on fuzzy c-means. Modeling Decisions for Artificial Intelligence. Springer Berlin Heidelberg, 2013
    [29] Qiao Junfei, Zhang Wei, Han Honggui. Self-organizing fuzzy control for dissolved oxygen concentration using fuzzy neural network1. Journal of Intelligent & Fuzzy Systems, 2016, 30(6): 3411−3
    [30] Garcia-Alvarez D, Fuente M J, Vega P, Sainz G. Fault detection and diagnosis using multivariate statistical techniques in a wastewater treatment plant. IFAC Proceedings Volumes, 2009, 42(11): 952−957 doi: 10.3182/20090712-4-TR-2008.00156
  • 加载中
计量
  • 文章访问数:  10
  • HTML全文浏览量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-06-09
  • 录用日期:  2020-09-07

目录

    /

    返回文章
    返回