[1]
|
段广仁.高阶系统方法-Ⅰ.全驱系统与参数化设计.自动化学报, 2020, 46(7): 1333-1345 doi: 10.16383/j.aas.c200234Duan Guang-Ren. High-order system approaches: Ⅰ. Full-actuated systems and parametric designs. Acta Automatica Sinica, 2020, 46(7): 1333-1345 doi: 10.16383/j.aas.c200234
|
[2]
|
陈云烽.一类非线性系统的能控性条件.控制理论与应用, 1985, 2(2): 114-118 http://www.cnki.com.cn/Article/CJFDTotal-KZLY198502013.htmChen Yun-Feng. A sufficient condition for controllability of a class of nonlinear systems. Control Theory & Applications, 1985, 2(2): 114-118 http://www.cnki.com.cn/Article/CJFDTotal-KZLY198502013.htm
|
[3]
|
陈彭年, 贺建勋.一类控制有约束的非线性系统的全局可控性.控制理论与应用, 1986, 3(2): 94-99 http://www.cnki.com.cn/Article/CJFDTotal-KZLY198602012.htmChen Peng-Nian, He Jian-Xun. Global controllability of a class of nonlinear systems with restrained control. Control Theory & Applications, 1986, 3(2): 94-99 http://www.cnki.com.cn/Article/CJFDTotal-KZLY198602012.htm
|
[4]
|
Vidyasagar M. A controllability condition for nonlinear systems. IEEE Transactions on Automatic Control, 1972, 17(4): 569-570 doi: 10.1109/TAC.1972.1100064
|
[5]
|
Mirza K, Womack B. Controllability of a class nonlinear systems. IEEE Transactions on Automatic Control, 1972, 16(4): 531-535
|
[6]
|
Balachandran K, Somasundaram D. Controllability of nonlinear systems consisting of a bilinear mode with time-varying delays in control. Automatica, 1984, 20(2): 257-258 doi: 10.1016/0005-1098(84)90035-9
|
[7]
|
Somasundaram D, Balachandran K. Controllability of nonlinear systems consisting of a bilinear mode with distributed delays in control. IEEE Transactions on Automatic Control, 1984, 29(6): 573-575 doi: 10.1109/TAC.1984.1103583
|
[8]
|
Balachandran K, Dauer J P. Controllability of perturbed nonlinear delay systems. IEEE Transactions on Automatic Control, 1987, 32(2): 172-174 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=d6ddadd1122a769d6182f0779de53bd2
|
[9]
|
Klamka J. On the local controllability of perturbed nonlinear systems. IEEE Transactions on Automatic Control, 1975, 20(2): 289-291 doi: 10.1109/TAC.1975.1100929
|
[10]
|
Klamka J. On the global controllability of perturbed nonlinear systems. IEEE Transactions on Automatic Control, 1975, 20(1): 170-172 http://cn.bing.com/academic/profile?id=4e89d00e0ca33e72fa1ccfddb3124007&encoded=0&v=paper_preview&mkt=zh-cn
|
[11]
|
Klamka J. Relative controllability of nonlinear systems with delays in control. Automatica, 1976, 12(6): 633-634 doi: 10.1016/0005-1098(76)90046-7
|
[12]
|
Klamka J. Controllability of nonlinear systems with delay in control. IEEE Transactions on Automatic Control, 1975, 20(5): 702-704 doi: 10.1109/TAC.1975.1101046
|
[13]
|
Sun Y M. Necessary and sufficient condition for global controllability of planar affine nonlinear systems. IEEE Transactions on Automatic Control, 2007, 52(8): 1454-1460 doi: 10.1109/TAC.2007.902750
|
[14]
|
Sun Y M. Further results on global controllability of planar nonlinear systems. IEEE Transactions on Automatic Control, 2010, 55(8): 1872-1875 doi: 10.1109/TAC.2010.2048054
|
[15]
|
Nam K, Araostathis A. A sufficient condition for local controllability of nonlinear systems along closed orbits. IEEE Transactions on Automatic Control, 1992, 37(3): 378-380 doi: 10.1109/9.119642
|
[16]
|
Celikovsky S, Nijmeijer H. On the relation between local controllability and stabilizability for a class of nonlinear systems. IEEE Transactions on Automatic Control, 1997, 42(1): 90-94 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=73132ce6f6c6439719d30dfdf895b228
|
[17]
|
Celikovsky S. Local stabilization and controllability of a class of non-triangular nonlinear systems. IEEE Transactions on Automatic Control, 2000, 45(10): 1909-1913 doi: 10.1109/TAC.2000.880997
|
[18]
|
Mirza K, Womack B. On the controllability of a class of nonlinear systems. IEEE Transactions on Automatic Control, 1971, 16(5): 497-483 doi: 10.1109/TAC.1971.1099795
|
[19]
|
Mirza K, Womack B. On the controllability of nonlinear time-delay systems. IEEE Transactions on Automatic Control, 1972, 17(6): 812-814 doi: 10.1109/TAC.1972.1100155
|
[20]
|
张嗣瀛, 王景才, 刘晓平.微分几何方法与非线性控制系统(5).信息与控制, 1992, 21(5): 288-294 http://www.cnki.com.cn/Article/CJFDTotal-XXYK199205006.htmZhang Si-Ying, Wang Jing-Cai, Liu Xiao-Ping. Differential geometric methods and nonlinear control systems. Information and Control, 1992, 21(5): 288-294 http://www.cnki.com.cn/Article/CJFDTotal-XXYK199205006.htm
|
[21]
|
刘晓平, 张嗣瀛.对称非线性控制系统的能控性.控制理论与应用, 1991, 8(4): 452-455 http://www.cnki.com.cn/Article/CJFDTotal-KZLY199104018.htmLiu Xiao-Ping, Zhang Si-Ying. Controllability of nonlinear control systems with symmetries. Control Theory & Applications, 1991, 8(4): 452-455 http://www.cnki.com.cn/Article/CJFDTotal-KZLY199104018.htm
|
[22]
|
刘晓平.对称非线性控制系统的能控分解.控制与决策, 1992, 7(1): 63-66 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=89520Liu Xiao-Ping. Controllability decomposition for nonlinear control systems with symmetries. Control and Decision, 1992, 7(1): 63-66 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=89520
|
[23]
|
赵军, 张嗣瀛.关于非线性的对称性、可达性与可控性.控制理论与应用, 1992, 9(2): 148-154 http://www.cnki.com.cn/Article/CJFDTotal-KZLY199202006.htmZhao Jun, Zhang Si-Ying. On symmetries, reachability and controllability of nonlinear systems. Control Theory & Applications, 1992, 9(2): 148-154 http://www.cnki.com.cn/Article/CJFDTotal-KZLY199202006.htm
|
[24]
|
井元伟, 胡三清, 刘晓平, 张嗣瀛.可解的具有广义对称性的非线性系统的同构分解与可控性.控制理论与应用, 1996, 13(2): 259-263Jing Yuan-Wei, Hu San-Qing, Liu Xiao-Ping, Zhang Si-Ying. Isomorphic decompositon and controllability of systems possessing solvable general symmetries. Control Theory & Applications, 1996, 13(2): 259-263
|
[25]
|
铁林, 蔡开元, 林岩.双线性系统可控性综述.自动化学报, 2011, 37(9): 1040-1049 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zdhxb201109002Tie Lin, Cai Kai-Yuan, Lin Yan. A survey on the controllability of bilinear systems. Acta Automatica Sinica, 2011, 37(9): 1040-1049 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zdhxb201109002
|
[26]
|
Bellman R, Bentsman J, Meerkov S. Vibrational control of nonlinear systems: Vibrational controllability and transient behavior. IEEE Transactions on Automatic Control, 1986, 31(8): 717-724 doi: 10.1109/TAC.1986.1104383
|
[27]
|
Cortes J, Martinez S, Bullo F. On nonlinear controllability and series expansions for Lagrangian systems with dissipative forces. IEEE Transactions on Automatic Control, 2002, 47(8): 1396-1401 doi: 10.1109/TAC.2002.801187
|
[28]
|
Melody J, Basar T, Bullo F. On nonlinear controllability of homogeneous systems linear in control. IEEE Transactions on Automatic Control, 2003, 48(1): 139-143 doi: 10.1109/TAC.2002.806667
|
[29]
|
Sunahara Y, Kabeuchi T, Asada Y, Aihara S, Kishino K. On stochastic controllability for nonlinear systems. IEEE Transactions on Automatic Control, 1974, 19(1): 49-54 doi: 10.1109/TAC.1974.1100464
|
[30]
|
贺昌政, 杨柳.非线性控制系统的能控性及在刚体动力学中的应用.控制理论与应用, 2000, 17(2): 204-208 doi: 10.3969/j.issn.1000-8152.2000.02.011He Chang-Zheng, Yang Liu. The controllability of nonlinear control system and its application to dynamics of rigid body. Control Theory & Applications, 2000, 17(2): 204-208 doi: 10.3969/j.issn.1000-8152.2000.02.011
|
[31]
|
王晓明, 崔平远, 崔祜涛.仿射非线性系统的能控性.控制与决策, 2008, 23(10): 1129-1134 doi: 10.3321/j.issn:1001-0920.2008.10.010Wang Xiao-Ming, Cui Ping-Yuan, Cui Hu-Tao. Controllability of affine nonlinear systems. Control and Decision, 2008, 23(10): 1129-1134 doi: 10.3321/j.issn:1001-0920.2008.10.010
|
[32]
|
Bhat S R. Controllability of nonlinear time-varying systems: Applications to spacecraft attitude control using magnetic actuation. IEEE Transactions on Automatic Control, 2005, 50(11): 1725-1735 doi: 10.1109/TAC.2005.858686
|
[33]
|
徐志宇, 许维胜, 余有灵, 吴启迪. DC-DC变换器在恒功率负载下的能控性.控制理论与应用, 2010, 27(9): 1273-1276 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kzllyyy201009026Xu Zhi-Yu, Xu Wei-Sheng, Yu You-Ling, Wu Qi-Di. Controllability of DC-DC converters with constant power-load. Control Theory & Applications, 2010, 27(9): 1273-1276 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kzllyyy201009026
|
[34]
|
Nishimura Y, Tsubakino D. Local controllability of single-input nonlinear systems based on deterministic wiener processes. IEEE Transactions on Automatic Control, 2020, 65(1): 354-360 doi: 10.1109/TAC.2019.2912452
|
[35]
|
Muller M A, Liberzon D, Allgower F. Norm-controllability of nonlinear systems. IEEE Transactions on Automatic Control, 2015, 60(7): 1825-1840 doi: 10.1109/TAC.2015.2394953
|
[36]
|
Davison E, Silverman L, Varaiya P. Controllability of a class of nonlinear time-variable systems. IEEE Transactions on Automatic Control, 1967, 12(6): 791-792 doi: 10.1109/TAC.1967.1098756
|
[37]
|
周鸿兴, 赵怡.非线性系统的能控性理论.控制理论与应用, 1988, 5(2): 1-14 http://www.cnki.com.cn/Article/CJFDTotal-KZLY198802000.htmZhou Hong-Xing, Zhao Yi. A study of controllability theory of nonlinear systems. Control Theory & Applications, 1988, 5(2): 1-14 http://www.cnki.com.cn/Article/CJFDTotal-KZLY198802000.htm
|
[38]
|
程代展, 秦化淑.非线性系统的几何方法(下)-目前动态与展望.控制理论与应用, 1987, 4(2): 1-9 http://www.cnki.com.cn/Article/CJFDTotal-KZLY198702000.htmCheng Dai-Zhan, Qin Hua-Shu. Geometric methods for nonlinear systems. Ⅱ. Current trends and prospects. Control Theory & Applications, 1987, 4(2): 1-9 http://www.cnki.com.cn/Article/CJFDTotal-KZLY198702000.htm
|
[39]
|
Gershwin S, Jacobson D. A controllability theory for nonlinear systems. IEEE Transactions on Automatic Control, 1971, 16(1): 37-46 doi: 10.1109/TAC.1971.1099624
|
[40]
|
刘成, 冯元琨, 李春文, 杜继宏.基于非线性系统受控因子的能控性分析方法.控制与决策, 1997, 12(S1): 504-507 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199700345805Liu Cheng, Feng Yuan-Kun, Li Chun-Wen, Du Ji-Hong. A method to nonlinear controllability based on its controllable factors. Control and Decision, 1997, 12(S1): 504-507 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199700345805
|
[41]
|
Hanba S. Controllability to the origin implies state-feedback stabilizability for discrete-time nonlinear systems. Automatica, 2017, 76: 49-52 doi: 10.1016/j.automatica.2016.09.046
|
[42]
|
王文涛, 李媛.一类非线性微分代数系统的能控性子分布.控制理论与应用, 2009, 26(10): 1126-1129 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kzllyyy200910012Wang Wen-Tao, Li Yuan. Controllability distributions of a class of nonlinear differential-algebraic systems. Control Theory & Applications, 2009, 26(10): 1126-1129 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kzllyyy200910012
|
[43]
|
王文涛, 刘晓平, 赵军.非线性奇异系统的能控性子分布.自动化学报, 2004, 30(5): 716-722 http://www.aas.net.cn/article/id/16206Wang Wen-Tao, Liu Xiao-Ping, Zhao Jun. Controllability distributions of nonlinear singular systems. Acta Automatica Sinica, 2004, 30(5): 716-722 http://www.aas.net.cn/article/id/16206
|
[44]
|
Zheng Y F, Willems J C, Zhang C S. A polynomial approach to nonlinear system controllability. IEEE Transactions on Automatic Control, 2001, 46(11): 1782-1788 doi: 10.1109/9.964691
|
[45]
|
高为炳, 程勉, 夏小华.非线性控制系统的发展.自动化学报, 1991, 17(5): 513-523 http://www.aas.net.cn/article/id/14560Gao Wei-Bing, Cheng Mian, Xia Xiao-Hua. The development of nonlinear control systems. Acta Automatica Sinica, 1991, 17(5): 513-523 http://www.aas.net.cn/article/id/14560
|
[46]
|
Casti J L. Recent developments and future perspectives in nonlinear system theory. SIAM Review, 1982, 24(3): 301-331 doi: 10.1137/1024065
|
[47]
|
Brocket R W. Asymptotic stability and feedback stabilization. Differential Geometric Control Theory. Boston: Birkhauser, 1983. 181-191
|
[48]
|
Kalman R. On the general theory of control systems. IRE Transactions on Automatic Control, 1959, 4(3): 110 doi: 10.1109/TAC.1959.1104873
|
[49]
|
Kalman R E. On the general theory of control systems. IFAC Proceedings Volumes, 1960, 1(1): 491-502 doi: 10.1016/S1474-6670(17)70094-8
|
[50]
|
段广仁.线性系统理论(上下册).第3版.北京:科学出版社, 2016.Duan Guang-Ren. Linear System Theory (two volumes) (Third edition). Science Press, 2016.
|
[51]
|
Duan G R. Analysis and Design of Descriptor Linear Systems. New York, USA: Springer, 2010.
|
[52]
|
Duan G R. Generalized Sylvester Equations: Unified Parametric Solutions. Raton: CRC Press, 2015.
|
[53]
|
Duan G R, Gao Y J. State-space realization and generalized Popov Belevitch Hautus criterion for high-order linear systems - The singular case. International Journal of Control, Automation and Systems, 2020, 18(8): 2038-2047 doi: 10.1007/s12555-019-0212-4
|
[54]
|
李文林, 高为炳.非线性控制系统的可控标准型问题.航空学报, 1989, 10(5): 249-258 doi: 10.3321/j.issn:1000-6893.1989.05.007Li Wen-Lin, Gao Wei-Bing. Controllability canonical form for nonlinear control systems. Acta Aeronautica ET Astronautica Sinica, 1989, 10(5): 249-258 doi: 10.3321/j.issn:1000-6893.1989.05.007
|
[55]
|
段广仁.飞行器控制的伪线性系统方法-第二部分:方法与展望.宇航学报, 2020, 41(7): 839-849Duan Guang-Ren. Quasi-linear system approaches for flight vehicle control - Part 2: Methods and prospects. Journal of Astronautics, 2020, 41(7): 839-849
|
[56]
|
段广仁.飞行器控制的伪线性系统方法-第一部分:综述与问题.宇航学报, 2020, 41(6): 633-646Duan Guang-Ren. Quasi-linear system approaches for flight vehicle control - Part 1: An overview and problems. Journal of Astronautics, 2020, 41(6): 633-646
|