2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

异构集群系统分布式自适应输出时变编队跟踪控制

田磊 董希旺 赵启伦 李清东 吕金虎 任章

田磊, 董希旺, 赵启伦, 李清东, 吕金虎, 任章. 异构集群系统分布式自适应输出时变编队跟踪控制. 自动化学报, 2021, 47(10): 2386−2401 doi: 10.16383/j.aas.c200185
引用本文: 田磊, 董希旺, 赵启伦, 李清东, 吕金虎, 任章. 异构集群系统分布式自适应输出时变编队跟踪控制. 自动化学报, 2021, 47(10): 2386−2401 doi: 10.16383/j.aas.c200185
Tian Lei, Dong Xi-Wang, Zhao Qi-Lun, Li Qing-Dong, Lv Jin-Hu, Ren Zhang. Distributed adaptive time-varying output formation tracking for heterogeneous swarm systems. Acta Automatica Sinica, 2021, 47(10): 2386−2401 doi: 10.16383/j.aas.c200185
Citation: Tian Lei, Dong Xi-Wang, Zhao Qi-Lun, Li Qing-Dong, Lv Jin-Hu, Ren Zhang. Distributed adaptive time-varying output formation tracking for heterogeneous swarm systems. Acta Automatica Sinica, 2021, 47(10): 2386−2401 doi: 10.16383/j.aas.c200185

异构集群系统分布式自适应输出时变编队跟踪控制

doi: 10.16383/j.aas.c200185
基金项目: 国家重点研发计划课题(2018AAA0102303), 国家自然科学基金(61922008, 61973013, 61873011, 61803014), 国防创新特区项目(18-163-00-TS-001-001-34), 国防基础科研计划资助(JCKY2019601C106), 北京市自然科学基金(4182035)资助
详细信息
    作者简介:

    田磊:硕士, 助理工程师. 主要研究方向为多智能体系统协同控制方法及其应用

    董希旺:博士, 教授. 主要研究方向为一致性控制, 编队控制, 合围控制及其在无人机集群系统的应用. 本文通信作者. E-mail: xwdong@buaa.edu.cn

    赵启伦:博士, 工程师. 主要研究方向为协同制导和协同控制

    李清东:博士, 高级工程师. 主要研究方向为飞行器的制导, 导航与控制, 故障诊断与容错控制

    吕金虎:博士, 教授. 主要研究方向为智能系统, 协同控制理论与技术, 复杂网络与大数据

    任章:博士, 教授. 主要研究方向为控制理论与应用及飞行器控制、制导与导航

Distributed Adaptive Time-varying Output Formation Tracking for Heterogeneous Swarm Systems

Funds: Supported by Science and Technology Innovation 2030-Key Project of “New Generation Artificial Intelligence” (2018AAA0102303), the National Natural Science Foundation of China (61922008, 61973013, 61873011, 61803014), the Innovation Zone Project (18-163-00-TS-001-001-34), the Defense Industrial Technology Development Program (JCKY2019601C106), the Beijing Natural Science Foundation (4182035)
More Information
    Author Bio:

    TIAN Lei Master, assistant engineer. His research interest covers cooperative control approach and application of multiagent systems

    DONG Xi-Wang Ph. D., professor. His research interest covers consensus control, formation control, and containment control of multi-agent systems with applications to UAV swarm systems. Correspondings author of this paper

    ZHAO Qi-Lun Ph. D., engineer. His research interest covers cooperative guidance and control

    LI Qing-Dong Ph. D. degree, senior engineer. His research interest covers aircraft guidance, navigation and control, fault detection, isolation and recovery

    LV Jin-Hu Ph. D., professor. His research interest covers intelligent systems, cooperative control theory and technology, complex networks, and big data

    REN Zhang Ph. D., professor. His research interest covers control theory and application and aircraft control, guidance and navigation

  • 摘要: 提出了一种能够解决高阶异构集群系统输出时变编队跟踪问题的控制方法. 集群系统中的智能体分为领导者和跟随者, 领导者和跟随者的动力学模型可以完全不同. 跟随者的输出在跟踪领导者输出的同时保持时变编队实现协同运动. 考虑了领导者存在已知或未知控制输入、领导者和跟随者均存在未知扰动、有向通信拓扑存在切换等多种因素并存的情况, 结合观测器理论、自适应控制理论和滑模控制理论设计了完全分布式的输出时变编队跟踪控制协议, 摆脱了对领导者控制输入上界值、与通信拓扑相关的拉普拉斯矩阵的特征值以及时变编队函数等全局信息的依赖. 利用Lyapunov理论证明了在有向拓扑切换条件下异构集群系统的闭环稳定性. 最后通过数值仿真对理论结果的有效性进行了验证.
    1)  收稿日期 2020-04-04 录用日期 2020-08-27 Manuscript received April 4, 2020; accepted August 27, 2020 国家重点研发计划课题(2018AAA0102303), 国家自然科学基金 (61922008, 61973013, 61873011, 61803014), 国防创新特区项目(18-163-00-TS-001-001-34), 国防基础科研计划资助(JCKY2019601C106), 北京市自然科学基金(4182035)资助 Supported by Science and Technology Innovation 2030-Key Project of “New Generation Artificial Intelligence” (2018AAA0102303), National Natural Science Foundation of China (61922008, 61973013, 61873011, 61803014), the Innovation Zone Project (18-163-00-TS-001-001-34), the Defense Industrial Technology Development Program (JCKY2019601C106), the Beijing Natural Science Foundation (4182035) 本文责任编委 邓方 Recommended by Associate Editor DENG Fang 1. 北京航空航天大学自动化科学与电气工程学院飞行器控制一体化技术国防科技重点实验室 北京 100191 2. 北京航空航天大学, 大数据科学与脑机智能高精尖创新中心 北京 100191 3. 北京
    2)  电子工程总体研究所 北京 100854 1.School of Automation Science and Electrical Engineering, Science and Technology on Aircraft Control Laboratory, Beihang University, Beijing 100191 2. Advanced Innovation Center for Big Data and Brain Computing, Beihang University, Beijing 100191 3. Beijing Institute of Electronic System Engineering, Beijing 100854
  • 图  1  有人−无人飞行器协同飞行示意图

    Fig.  1  The illustration of cooperative flight strategy for manned and unmanned aerial vehicles

    图  2  空地协同围捕目标示意图

    Fig.  2  The illustration of hunting target by air-ground collaboration

    图  3  集群系统输出时变编队跟踪示意图

    Fig.  3  The illustration of time-varying output formation tracking for swarm systems

    图  4  集群系统的通信拓扑关系

    Fig.  4  The communication topologies of swarm systems

    图  5  控制协议(7)和(8)中观测器的估计误差

    Fig.  5  The estimation errors of observers in control protocol (7) and control protocol (8)

    图  6  跟随者控制协议(8)中的自适应增益变化曲线

    Fig.  6  The varying curve of adaptive gains in followers′ control protocol (8)

    图  7  跟随者控制协议(8)中的控制输入变化曲线

    Fig.  7  The varying curve of control input in followers′ control protocol (8)

    图  8  当领导者是合作目标时集群系统的输出轨迹以及部分时刻的输出信息

    Fig.  8  The trajectory of output and the output information at partial moments associated with swarm systems when leader is cooperative target

    图  9  当领导者是合作目标时集群系统输出时变编队跟踪误差

    Fig.  9  The error of time-varying output formation tracking related to swarm systems when leader is cooperative target

    图  10  当领导者是非合作目标时集群系统的输出轨迹以及部分时刻的输出信息

    Fig.  10  The trajectory of output and the output information at partial moments associated with swarm systems when leader is noncooperative target

    图  11  当领导者是非合作目标时集群系统输出时变编队跟踪误差

    Fig.  11  The error of time-varying output formation tracking related to swarm systems when leader is noncooperative target

  • [1] Ren W. Consensus strategies for cooperative control of vehicle formations. IET Control Theory & Applications, 2007, 1(2): 505-512
    [2] Yang X W, Fan X P. Distributed formation control for multiagent systems in the presence of external disturbances. IEEE Access, 2019, 7: 80194-80207 doi: 10.1109/ACCESS.2019.2923852
    [3] Dong X W, Hu G Q. Time-varying formation control for general linear multi-agent systems with switching directed topologies. Automatica, 2016, 73: 47-55 doi: 10.1016/j.automatica.2016.06.024
    [4] Gong Y F, Wen G G, Peng Z X, Huang T W, Chen Y W. Observer-based time-varying formation control of fractional order multi-agent systems with general linear dynamics. IEEE Transactions on Circuits and Systems Ⅱ: Express Briefs, 2019. https://ieeexplore.ieee.org/doi:10.1109/TCSII.2019.2899063" target="_blank">10.1109/TCSII.2019.2899063">https://ieeexplore.ieee.org/doi:10.1109/TCSII.2019.2899063
    [5] Li S B, Zhang J, Li X L, Wang F, Luo X Y, Guan X P. Formation control of heterogeneous discrete-time nonlinear multi-agent systems with uncertainties. IEEE Transactions on Industrial Electronics, 2017, 64(6): 4730-4740 doi: 10.1109/TIE.2017.2674590
    [6] Wang R, Dong X W, Li Q D, Ren Z. Distributed time-varying output formation control for general linear multiagent systems with directed topology. IEEE Transactions on Control of Network Systems, 2019, 6(2): 609-620 doi: 10.1109/TCNS.2018.2863047
    [7] Zuo S, Song Y D, Frank L L, Davoudi A. Adaptive output formation-tracking of heterogeneous multi-agent systems using time-varying L2-gain design. IEEE Control Systems Letters, 2018, 2(2): 236-241 doi: 10.1109/LCSYS.2018.2814071
    [8] Su H S, Zhang J X, Chen X. A stochastic sampling mechanism for time-varying formation of multiagent systems with multiple leaders and communication delays. IEEE Transactions on Neural Networks and Learning Systems, 2019, https://ieeexplore.ieee.org/doi:10.1109/TNNLS.2019.2891259" target="_blank">10.1109/TNNLS.2019.2891259">https://ieeexplore.ieee.org/doi:10.1109/TNNLS.2019.2891259
    [9] Wang Y J, Song Y D, Ren W. Distributed adaptive finite-time approach for formation-Containment control of networked nonlinear systems under directed topology. IEEE Transactions on Neural Networks and Learning Systems, 2018, 29(7): 3164-3175
    [10] Li D Y, Zhang W, He W, Li C J, Ge S S. Two-layer distributed formation-containment control of multiple Euler-Lagrange systems by output feedback. IEEE Transactions on Cybernetics, 2019, 49(2): 675-687 doi: 10.1109/TCYB.2017.2786318
    [11] Hua Y Z, Dong X W, Li Q D, Ren Z. Distributed time-varying formation robust tracking for general linear multiagent systems with parameter uncertainties and external disturbances. IEEE Transactions on Cybernetics, 2017, 47(8): 1959-1969 doi: 10.1109/TCYB.2017.2701889
    [12] Yu J L, Dong X W, Li Q D, Ren Z. Practical time-varying formation tracking for second-order nonlinear multiagent systems with multiple leaders using adaptive neural networks. IEEE Transactions on Neural Networks and Learning Systems, 2018, 29(12): 6015-6025 doi: 10.1109/TNNLS.2018.2817880
    [13] Yu J L, Dong X W, Han L, Li Q D, Ren Z. Practical time-varying formation tracking for high-order nonlinear strict-feedback multi-agent systems with input saturation. ISA Transactions, 2019, https://doi.org/10.1016/j.isatra.2019.08.019
    [14] Wang Y, He L, Huang C Q. Adaptive time-varying formation tracking control of unmanned aerial vehicles with quantized input. ISA Transactions, 2019, 85: 76-83 doi: 10.1016/j.isatra.2018.09.013
    [15] Zuo S, Song Y D, Frank L L, Davoudi A. Time-varying output formation containment of general linear homogeneous and heterogeneous multi-agent systems. IEEE Transactions on control of Networks Systems, 2019, 6(2): 537-548 doi: 10.1109/TCNS.2018.2847039
    [16] Hua Y Z, Dong X W, Hu G Q, Li Q D, Ren Z. Distributed time-varying output formation tracking for heterogeneous linear multi-agent systems with a nonautonomous leader of un-known input. IEEE Transactions on Automatic Control, 2019, 64(10): 4292-4299 doi: 10.1109/TAC.2019.2893978
    [17] 田磊, 王蒙一, 赵启伦, 王晓东, 宋勋, 任章. 拓扑切换的集群系统分布式分组时变编队跟踪控制. 中国科学: 信息科学, 2020, 50(3): 408-423 doi: 10.1360/SSI-2019-0171

    Tian Lei, Wang Meng-Yi, Zhao Qi-Lun, Wang Xiao-Dong, Song Xun, Ren Zhang. Distributed time-varying group formation tracking for cluster systems with switching interaction topologies (in Chinese). Scientia Sinica Informations, 2020, 50(3): 408-423 doi: 10.1360/SSI-2019-0171
    [18] Jiang W, Wen G G, Peng Z X, Huang T W, Rahmani A. Fully distributed formation-containment control of heterogeneous linear multiagent Systems. IEEE Transactions on Automatic Control, 2019, 64(9): 3889-3896 doi: 10.1109/TAC.2018.2887409
    [19] Hua Y Z, Dong X W, Wang J B, Li Q D, Ren Z. Time-varying output formation tracking for heterogeneous linear multi-agent systems with multiple leaders and switching topologies. Journal of the Franklin Institute, 2019, 356: 539-560 doi: 10.1016/j.jfranklin.2018.11.006
    [20] Liu X M, Ge S S, Goh C H, Li Y N. Event-triggered coordination for formation tracking control in constrained space with limited communication. IEEE Transactions on Cybernetics, 2019, 49(3): 1000-1011 doi: 10.1109/TCYB.2018.2794139
    [21] Hua Y Z, Dong X W, Han L, Li Q D, Ren Z. Finite-time time-varying formation tracking for high-order multiagent systems with mismatched disturbances. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2018. http://ieeexplore.ieee.org/doi:10.1109/TSMC.2018.2867548" target="_blank">10.1109/TSMC.2018.2867548">http://ieeexplore.ieee.org/doi:10.1109/TSMC.2018.2867548
    [22] Duan J, Zhang H G, Cai Y L, Zhang K. Finite-time time-varying output formation-tracking of heterogeneous linear multi-agent systems. Journal of the Franklin Institute, 2019. https://www.sciencedirect.com/doi:10.1016/j.jfranklin.2019.10.012" target="_blank">10.1016/j.jfranklin.2019.10.012">https://www.sciencedirect.com/doi:10.1016/j.jfranklin.2019.10.012
    [23] Su Y F, Huang J. Cooperative output regulation of linear multiagent systems. IEEE Transactions on Automatic Control, 2012, 57(4): 1062-1066 doi: 10.1109/TAC.2011.2169618
    [24] Li Z K, Chen M Z Q, Ding Z T. Distributed adaptive controllers for cooperative output regulation of heterogeneous agents over directed graphs. Automatica, 2016, 68: 179-183 doi: 10.1016/j.automatica.2016.01.076
    [25] Lu M B, Liu L. Distributed feedforward approach to cooperative output regulation subject to communication delays and switching networks. IEEE Transactions on Automatic Control, 2012, 62(4): 1999-2005
    [26] Cai H, Lewis F L, Hu G Q, Huang J. The adaptive distributed observer approach to the cooperative output regulation of linear multiagent systems. Automatica, 2017, 75: 299-305 doi: 10.1016/j.automatica.2016.09.038
    [27] Huang J. Nonlinear Output Regulation: Theory and Applications. Philadelphia, PA: SIAM, 2004.
    [28] Wheeler G, Su C Y, Stepanenko Y. A sliding mode controller with improved adaptation laws for the upper bounds on the norm of uncertainties. Automatica, 1998, 34(12): 1657-1661 doi: 10.1016/S0005-1098(98)80024-1
    [29] Wu H S. Adaptive robust tracking and model following of uncertain dynamical systems with multiple time delays. IEEE Transactions on Automatic Control, 2004, 49(4): 611-616 doi: 10.1109/TAC.2004.825634
    [30] 李振营, 沈毅, 胡恒章. 具有未知输入干扰的观测器设计. 航空学报, 2000, 21(5): 471-473 doi: 10.3321/j.issn:1000-6893.2000.05.023

    Li Zhen-Ying, Shen Yi, Hu Heng-Zhang. Design of observers for system with unknown inputs (in Chinese). Acta Aeronautica et Astronautica Sinica, 2000, 21(5): 471-473 doi: 10.3321/j.issn:1000-6893.2000.05.023
    [31] Qu Z. Cooperative Control of Dynamical Systems: Applications to Autonomous Vehicles. London, U. K.: Springer-Verlag, 2009
    [32] 韩冬, 朱芳来. 一类未知输入系统的降维观测器设计. 上海交通大学学报, 2012, 46(11): 1779-1785

    Han Dong, Zhu Fang-Lai. Reduced-order observer design for systems with unknown inputs (in Chinese). Journal of Shanghai Jiaotong University, 2012, 46(11): 1779-1785
    [33] 张建成, 朱芳来. 匹配条件不满足时线性系统未知输入观测器设计. 控制理论与应用, 2017, 34(4): 441-448

    Zhang Jian-Chen, Zhu Fang-Lai. Linear system unknown input observer design when the observer matching condition is not satisfied (in Chinese). Control Theory & Applications, 2017, 34(4): 441-448
  • 加载中
图(11)
计量
  • 文章访问数:  2923
  • HTML全文浏览量:  369
  • PDF下载量:  790
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-04-04
  • 录用日期:  2020-08-27
  • 网络出版日期:  2021-09-30
  • 刊出日期:  2021-10-20

目录

    /

    返回文章
    返回