2.793

2018影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于分布式神经动态优化的综合能源系统多目标优化调度

黄博南 王勇 李玉帅 刘鑫蕊 杨超

黄博南, 王勇, 李玉帅, 刘鑫蕊, 杨超. 基于分布式神经动态优化的综合能源系统多目标优化调度. 自动化学报, 2020, 46(x): 1−19 doi: 10.16383/j.aas.c200168
引用本文: 黄博南, 王勇, 李玉帅, 刘鑫蕊, 杨超. 基于分布式神经动态优化的综合能源系统多目标优化调度. 自动化学报, 2020, 46(x): 1−19 doi: 10.16383/j.aas.c200168
Huang Bo-Nan, Wang Yong, Li Yu-Shuai, Liu Xin-Rui, Yang Chao. Multi-objective optimal scheduling of integrated energy systems based on distributed neurodynamic optimization. Acta Automatica Sinica, 2020, 46(x): 1−19 doi: 10.16383/j.aas.c200168
Citation: Huang Bo-Nan, Wang Yong, Li Yu-Shuai, Liu Xin-Rui, Yang Chao. Multi-objective optimal scheduling of integrated energy systems based on distributed neurodynamic optimization. Acta Automatica Sinica, 2020, 46(x): 1−19 doi: 10.16383/j.aas.c200168

基于分布式神经动态优化的综合能源系统多目标优化调度

doi: 10.16383/j.aas.c200168
基金项目: 国家重点研发计划(2018YFA0702200), 国家自然科学基金(61603085), 中央高校基础科研业务费(N2004005)资助
详细信息
    作者简介:

    黄博南:东北大学信息科学与工程学院副教授. 主要研究方向为神经动力学分析、复杂网络、多智能系统及其在智能电网和能源互联网中的应用. 本文通信作者. E-mail: huangbonan@ise.neu.edu.cn

    王勇:东北大学信息科学与工程学院硕士研究生. 主要研究方向为分布式优化和神经动力学方法, 以及其在微电网、智能电网和能源互联网中的应用.E-mail: 1870504@stu.neu.edu.cn

    李玉帅:美国丹佛大学电气与计算机工程系博士后研究员, 主要研究方向为分布式控制和优化, 机器学习及其在微电网、智能电网和能源互联中的应用. E-mail: yushuaili@ieee.org

    刘鑫蕊:东北大学信息科学与工程学院副教授. 主要研究方向为电网信息物理系统、配电网故障诊断及自愈控制、模糊控制、网络控制、清洁能源消纳控制等. E-mail: liuxinrui@ise.neu.edu.cn

    杨超:国网辽宁省电力有限公司信息通信分公司工程师. 主要研究方向: 电力物联网、人工智能、电网大数据挖掘. E-mail: yangchaoneu@163.com

Multi-objective optimal scheduling of integrated energy systems based on distributed neurodynamic optimization

Funds: Supported by National Key R&D Program of China under grant (2018YFA0702200), National Natural Science Foundation of China (NSFC) under Grant(61603085), Fundamental Research Funds for the Central Universities(N2004005)
  • 摘要: 本文研究了基于神经动态优化的综合能源系统(Integrated Energy Systems, IES)分布式多目标优化调度问题. 首先, 将IES元件单元(包含负荷)作为独立的决策主体, 联合考量其运行成本和排放成本, 并计及多能源设备间的传输损耗, 提出了IES多目标优化调度模型, 该模型可描述为一类非凸多目标优化问题. 其次, 针对此类问题的求解, 提出了一种基于神经动力学系统的分布式多目标优化算法, 该算法基于动态权重的神经网络模型, 可以解决不可分离的不等式约束问题. 该算法计算负担小, 收敛速度快, 并且易于硬件实现. 仿真结果表明, 所提算法能同时协调综合能源系统的经济性和环境性这两个冲突的目标, 且获得了整个帕累托前沿, 有效降低了综合能源系统的污染物排放量和综合运行成本.
  • 图  1  本文所考虑的综合能源系统结构图

    Fig.  1  Architecture of integrated energy system considered in this paper

    图  2  用于分布式优化的 $RN{N_i}$ 框图

    Fig.  2  Block diagram of $RN{N_i}$ for distributed optimization

    图  4  电热气系统的信息拓扑图

    Fig.  4  Information topology of the integrated electro-heating-gas system

    图  3  所提出的分布式方法在IES的实现过程

    Fig.  3  Implementation diagram of the proposed distributed approach for IES

    图  5  电热气系统的物理拓扑图

    Fig.  5  Physical topology of the integrated electro-heating-gas system

    图  6  综合能源系统多目标优化调度问题的帕累托前沿

    Fig.  6  The pareto front of Multi-objective Optimized Scheduling in the integrated energy systems

    图  7  常规负荷下综合能源系统各元件的最优出力

    Fig.  7  Optimal outputs of components the integrated energy systems under conventional load

    图  8  24小时负荷下综合能源系统各元件的最优出力

    Fig.  8  Optimal outputs of components the integrated energy systems under 24 hour load

    图  9  即插即用下综合能源系统各元件的最优出力

    Fig.  9  Optimal outputs of components the integrated energy systems under the plug and play property

    C6  各设备在不同运行方式下的功率

    C6  Power of each device under different operating modes

    CG DRG DRHD FG FHD CHP DPSD DHSD GP PL HL GL
    以电定热 10 100 135 30 50 60.5/14.7 −100 −100 375.5 90 95 190
    本文 12.6 103.5 133.2 30 50 55/44 −100 −100 405.9 90 95 190
    下载: 导出CSV

    C1  各设备运行成本函数参数及出力上下限参数

    C1  The operation cost function parameters and output limit parameters of equipment

    CG ${\alpha _i}$ ${\beta _i}$ ${\gamma _i}$ $P_{CGi}^{\min }$ $P_{CGi}^{\max }$ $P_{CGi}^{ramp}$
    0.1 3 25 10 200 45
    DRG ${b_i}$ ${\varepsilon _i}$ ${\gamma _i}$ $P_{DRGi}^{\min }$ $P_{DRGi}^{\max }$
    0.11 300 -1.1 84.3 103.5
    DRHD ${b_i}$ ${\varepsilon _i}$ ${\gamma _i}$ $H_{DRHDi}^{\min }$ $H_{DRHDi}^{\max }$
    0.12 534 -1.3 133.2 148.2
    FG ${a_i}$ ${b_i}$ ${c_i}$ ${\varepsilon _i}$ ${\eta _i}$ $P_{FGi}^{\min }$ $P_{FGi}^{\min }$ $P_{FGi}^{ramp}$
    0.04 5 99 5 0.01 30 150 45
    FHD ${a_i}$ ${b_i}$ ${c_i}$ ${\varepsilon _i}$ ${\eta _i}$ $H_{FHDi}^{\min }$ $H_{FHDi}^{\max }$
    0.027 5 60 5 0.008 50 150
    CHP ${a_i}$ ${b_i}$ ${\alpha _i}$ ${\beta _i}$ ${\sigma _i}$ ${c_i}$ $P_{CHPi}^{ramp}$
    0.0345 14.5 0.03 4.2 0.031 230 45
    DPSD ${a_i}$ ${b_i}$ $P_{sti}^{ds,\max }$ $P_{sti}^{ch,\max }$ $S_{sti}^{\min }$ $S_{sti}^{\max }$ $S_{sti}^{\rm{0}}$
    0.028 535 220 220 35 350 240
    DHSD ${a_i}$ ${b_i}$ $P_{sti}^{ds,\max }$ $P_{sti}^{ch,\max }$ $S_{sti}^{\min }$ $S_{sti}^{\max }$ $S_{sti}^{\rm{0}}$
    0.013 961 400 400 62 620 560
    GP ${a_i}$ ${b_i}$ ${c_i}$ ${d_i}$ $g_{_{GPi}}^{\min }$ $g_{_{GPi}}^{\max }$
    $ 2{10}^{-6} $ 0.006 50 4 100 1500
    EL $a_i^p$ $b_i^p$ $a_i^h$ $b_i^h$ $a_i^g$ $b_i^g$ $P_{fli}^{\max }$ $H_{fli}^{\max }$ $g_{fli}^{\max }$
    0.016 42.5 0.01 25.5 0.0167 22 1000 800 500
    下载: 导出CSV

    C2  各设备环境成本参数

    C2  The environmental cost function parameters of equipment

    CG ${\omega _i}$ ${\mu _i}$ ${\kappa _i}$ ${\zeta _i}$ ${\pi _i}$ ${\tau _i}$
    0.0409 −2.7 0.649 2 0.02857 0.64
    FG ${\omega _i}$ ${\mu _i}$ ${\kappa _i}$ ${\zeta _i}$ ${\pi _i}$ ${\tau _i}$
    0.0254 −3.025 0.05638 5 0.0333 0.52
    CHP ${\omega _i}$ ${\mu _i}$ ${\tau _i}$
    $ 1.5{10}^{-6} $ $ 1.5{10}^{-5} $ 0.2
    FHD ${\omega _i}$ ${\mu _i}$ ${\tau _i}$
    $ 8{10}^{-6} $ $ 1{10}^{-5} $ 0.8
    GP ${\omega _i}$ ${\mu _i}$ ${\tau _i}$
    $ 8{10}^{-6} $ $ 1{10}^{-5} $ 0.6
    下载: 导出CSV

    C3  电力网络传输线路参数

    C3  The parameters of power network transmission pipelines

    线路 $P_e^{\min }$ $P_e^{\max }$ 线路 $P_e^{\min }$ $P_e^{\max }$
    1-13 0 200 4-13 0 200
    2-13 0 200 5-13 0 200
    3-13 0 200 6-13 0 200
    下载: 导出CSV

    C4  热力网络传输管道参数

    C4  parameters of heating network transmission pipelines

    管道 ${l_g}$ $m_g^{\min }$ $m_g^{\max }$ ${R_h}$ 节点 $t_{s,f}^{\min }$ $t_{s,f}^{\min }$
    4-14 2.8 0 2700 20 4 80 100
    7-14 2.5 0 2700 20 7 80 100
    8-14 3.0 0 2700 20 8 80 100
    下载: 导出CSV
  • [1] 唐昊, 刘畅, 杨明, 汤必强, 许丹, 吕凯. 考虑电网调峰需求的工业园区主动配电系统调度学习优化. 自动化学报, 2019, 45(x): 1−15

    Tang Hao, Liu Chang, Yang Ming, Tang Bi-Qiang, Xu Dan, Lv Kai. Learning-based optimization of active distribution system dispatch in industrial park considering the peak operation demand of power grid. Acta Automatica Sinica, 2019, 45(x): 1−15
    [2] 姜兆宇, 贾庆山, 管晓宏. 多时空尺度的风力发电预测方法综述. 自动化学报, 2019, 45(1): 51−71

    Jiang Zhao-Yu, Jia Qing-Shan, Guan Xiao-Hong. A review of multi-temporal-and-spatial-scale wind power forecasting method. Acta Automatica Sinica, 2019, 45(1): 51−71
    [3] 刘建刚, 杨胜杰. 具有容性负载的直流微电网系统分布式协同控制. 自动化学报, 2020, 46(6): 1283−1290

    Liu Jian-Gang, Yang Sheng-Jie. Distributed cooperative control of DC micro-grid systems with capacitive loads. Acta Automatica Sinica, 2020, 46(6): 1283−1290
    [4] Dey B, Roy S K, Bhattacharyya B, et al. Solving multi-objective economic emission dispatch of a renewable integrated microgrid using latest bio-inspired algorithms. Engineering Science and Technology, an International Journal, 2019, 22(1): 55−66 doi: 10.1016/j.jestch.2018.10.001
    [5] Qiu H, Gu W, Xu Y, et al. Tri-level mixed-integer optimization for two-stage microgrid dispatch with multi-uncertainties. IEEE Transactions on Power Systems, 2020, PP(99): 1−1
    [6] Chen C, Lee T, Jan R, et al. A novel direct search approach for combined heat and power dispatch. International Journal of Electrical Power & Energy Systems, 2012, 43(1): 766−773
    [7] Bahrami S, Sheikhi A. From demand response in smart grid toward integrated demand response in smart energy hub. IEEE Transactions on Smart Grid, 2016, 7(2): 650−658
    [8] Alkano D, Scherpen J M, Chorfi Y, et al. Asynchronous distributed control of biogas supply and multi-energy demand. IEEE Transactions on Automation Science and Engineering, 2017, 14(2): 558−572 doi: 10.1109/TASE.2017.2648789
    [9] Li Y, Zhang H, Liang X, et al. Event-triggered-based distributed cooperative energy management for multi-energy systems. IEEE Transactions on Industrial Informatics, 2019, 15(4): 2008−2022 doi: 10.1109/TII.2018.2862436
    [10] Yi Z, Xu Y, Hu J, et al. Distributed neurodynamic-based approach for economic dispatch in an integrated energy system. IEEE Transactions on Industrial Informatics, 2020, 16(4): 2245−2257 doi: 10.1109/TII.2019.2905156
    [11] Lou Y, Wang S. Approximate representation of the pareto frontier in multiparty negotiations: decentralized methods and privacy preservation. European Journal of Operational Research, 2016, 254(3): 968−976 doi: 10.1016/j.ejor.2016.04.060
    [12] Dandurand B, Wiecek M M. Distributed computation of pareto sets. Siam Journal on Optimization, 2015, 25(2): 1083−1109 doi: 10.1137/130929564
    [13] Chen J, Sayed A H. Distributed pareto optimization via diffusion strategies. IEEE Journal of Selected Topics in Signal Processing, 2013, 7(2): 205−220 doi: 10.1109/JSTSP.2013.2246763
    [14] Yang S, Liu Q, Wang J, et al. A collaborative neurodynamic approach to multiple-objective distributed optimization. IEEE Transactions on Neural Networks, 2018, 29(4): 981−992 doi: 10.1109/TNNLS.2017.2652478
    [15] Le X, Chen S, Yan Z, et al. A neurodynamic approach to distributed optimization with globally coupled constraints. IEEE Transactions on Cybernetics, 2017, 48(11): 3149−3158
    [16] Zhang H, Li Y, Gao D, et al. Distributed optimal energy management for energy internet. IEEE Transactions on Industrial Informatics, 2017, 13(6): 3081−3097 doi: 10.1109/TII.2017.2714199
    [17] Zhao C, He J, Cheng P, et al. Consensus-based energy management in smart grid with transmission losses and directed communication. IEEE Transactions on Smart Grid, 2016, 8(5): 2049−2061
    [18] Goncalves E, Balbo A R, Silva D N, et al. Deterministic approach for solving multi-objective non-smooth environmental and economic dispatch problem. International Journal of Electrical Power & Energy Systems, 2018, 104(JAN.): 880−897
    [19] 顾伟, 陆帅, 王珺, 等. 多区域综合能源系统热网建模及系统运行优化. 中国电机工程学报, 2017, 37(5): 1305−1315

    Gu Wei, Lu Shuai, Wang Jun, et al. Modeling of the heating network for multi-district integrated energy system and its operation optimization. Proceedings of the CSEE, 2017, 37(5): 1305−1315
    [20] Xu T, Wu W, Zheng W, et al. Fully distributed quasi-newton multi-area dynamic economic dispatch method for active distribution networks. IEEE Transactions on Power Systems, 2018, 33(4): 4253−4263 doi: 10.1109/TPWRS.2017.2771950
    [21] Correaposada C M, Sanchezmartin P. Integrated power and natural gas model for energy adequacy in short-term operation. IEEE Transactions on Power Systems, 2015, 30(6): 3347−3355 doi: 10.1109/TPWRS.2014.2372013
    [22] Ruizcanales P, Rufianlizana A. A characterization of weakly efficient points. Mathematical Programming, 1995, 68(2): 205−212
    [23] Mardle S, Miettinen K M. Nonlinear multi-objective optimization. Journal of the Operational Research Society, 1999, 51(2): 246
    [24] Attouch H, Garrigos G, Goudou X, et al. A dynamic gradient approach to pareto optimization with nonsmooth convex objective functions. Journal of Mathematical Analysis and Applications, 2015, 422(1): 741−771 doi: 10.1016/j.jmaa.2014.09.001
    [25] Liu Q, Yang S, Wang J. A collective neurodynamic approach to distributed constrained optimization. IEEE Transactions on Neural Networks and Learning Systems, 2016, 28(8): 1747−1758
    [26] Liu Q, Wang J. A one-layer projection neural network for nonsmooth optimization subject to linear equalities and bound constraints. IEEE Transactions on Neural Networks and Learning Systems, 2013, 24(5): 812−824 doi: 10.1109/TNNLS.2013.2244908
  • 加载中
计量
  • 文章访问数:  19
  • HTML全文浏览量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-03-30
  • 录用日期:  2020-08-14

目录

    /

    返回文章
    返回