2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

大幅面DLP3D打印机错位均摊接缝消除方法研究

张蓉 王宜怀 彭涛 徐昕 王绍丹

张蓉, 王宜怀, 彭涛, 徐昕, 王绍丹. 大幅面DLP型3D打印机错位均摊接缝消除方法研究. 自动化学报, 2022, 48(7): 1794−1804 doi: 10.16383/j.aas.c190670
引用本文: 张蓉, 王宜怀, 彭涛, 徐昕, 王绍丹. 大幅面DLP型3D打印机错位均摊接缝消除方法研究. 自动化学报, 2022, 48(7): 1794−1804 doi: 10.16383/j.aas.c190670
Zhang Rong, Wang Yi-Huai, Peng Tao, Xu Xin, Wang Shao-Dan. Seam elimination method by staggered splicing for large-scale DLP-type 3D printer. Acta Automatica Sinica, 2022, 48(7): 1794−1804 doi: 10.16383/j.aas.c190670
Citation: Zhang Rong, Wang Yi-Huai, Peng Tao, Xu Xin, Wang Shao-Dan. Seam elimination method by staggered splicing for large-scale DLP-type 3D printer. Acta Automatica Sinica, 2022, 48(7): 1794−1804 doi: 10.16383/j.aas.c190670

大幅面DLP3D打印机错位均摊接缝消除方法研究

doi: 10.16383/j.aas.c190670
基金项目: 国家自然科学基金(61672369), 江苏省自然科学基金(17KJB520035)资助
详细信息
    作者简介:

    张蓉:苏州大学计算机科学与技术学院硕士研究生. 主要研究方向为嵌入式系统及应用, 物联网技术和3D打印技术. E-mail: 20174227024@stu.suda.edu.cn

    王宜怀:苏州大学计算机科学与技术学院教授. 主要研究方向为嵌入式系统及应用, 物联网技术, 工业控制和人工神经网络及信息处理. 本文通信作者. E-mail: yihuaiw@suda.edu.cn

    彭涛:苏州大学计算机科学与技术学院博士研究生. 主要研究方向为物联网技术, 人工智能和医学图像处理. E-mail: sdpengtao401@gmail.com

    徐昕:苏州大学计算机科学与技术学院硕士研究生. 主要研究方向为物联网技术, 人工智能和3D打印. E-mail: 20175227038@stu.suda.edu.cn

    王绍丹:苏州大学计算机科学与技术学院研究实习员. 主要研究方向为物联网技术, 人工智能. E-mail: wang_shaodan@suda.edu.cn

Seam Elimination Method by Staggered Splicing for Large-scale DLP-type 3D Printer

Funds: Supported by National Natural Science Foundation of China (61672369) and Natural Science Foundation of Jiangsu Province (17KJB520035)
More Information
    Author Bio:

    ZHANG Rong Master student at the School of Computer Science & Technology, Soochow University. Her research interest covers embedded system and its application, internet of things, and 3D printing

    WANG Yi-Huai Professor at the School of Computer Science & Technology, Soochow University. His research interest covers embedded system and its application, internet of things, industrial control, artificial neural network and information processing. Corresponding author of this paper

    PENG Tao Ph.D. candidate at the School of Computer Science & Technology, Soochow University. His research interest covers internet of things, artificial intelligence, and medical image processing

    XU Xin Master student at the School of Computer Science & Technology, Soochow University. His research interest covers internet of things, artificial intelligence, and 3D printing

    WANG Shao-Dan Research intern at the School of Computer Science & Technolog, Soochow University. Her research interest covers internet of things and artificial intelligence

  • 摘要: 针对面曝光模式的数字光处理(Digital light processing, DLP)型3D打印机成型幅面较小问题, 提出一种移动拼接与错位均摊消除接缝痕迹相结合的大幅面技术方案. 该方案首先对三维模型进行均匀切片形成N层切面, 再对切面位图进行错位切分, 使得相邻层的拼接位置错开, 每张切面位图形成M张单元位图, 构成3D打印的数据源; 其次根据错位参数沿着X轴移动投影仪到达对应曝光位, 每层成型M张单元位图, 拼接构成一层切面薄片, 切面薄片的拼接位置逐层错开, 叠加生成三维模型实体. 实际打印结果表明, 该方案能够以较小的附加成本扩大成型尺寸, 提高模型整体质量.
  • 图  1  3D打印机机械示意图

    Fig.  1  Mechanical diagram of 3D printer

    图  2  3D打印成型过程

    Fig.  2  Forming process of 3D printing

    图  3  投影面拼接示意图

    Fig.  3  Schematic diagram of projection plane splicing

    图  4  梯形畸变之后的拼接效果示意图

    Fig.  4  Influence of projection distortion

    图  5  接缝位置示意图

    Fig.  5  Schematic diagram of seam position

    图  6  SS-SEM算法流程

    Fig.  6  Algorithm flow of SS-SEM

    图  7  三维模型错位切片处理示意图

    Fig.  7  Diagram of staggered slicing of 3D model

    图  8  实验平台

    Fig.  8  Experimental platform

    图  9  几种拼接方法打印成品对比

    Fig.  9  Comparison of finished products printed by several splicing methods

    图  10  模型侧表面

    Fig.  10  Side surface of model

    图  11  扫描方法与测量结果

    Fig.  11  Scanning method and measurement results

    图  12  拉力测试

    Fig.  12  Tensile test

    图  13  打印成品图

    Fig.  13  Pictures of printed products

    表  1  拉力破坏实验结果

    Table  1  Results of destructive tensile tests

    方案模型单层固化时间后固化时间次数平均拉力
    a哑铃模型1.5 s2 h8280.7 N
    b1.5 s2 h8215.3 N
    d1.5 s2 h8273.9 N
    下载: 导出CSV

    表  2  打印成品结果比较表

    Table  2  Comparison of printing results

    模型小狼头
    涡轮
    文字浮雕
    三角形数量2282307732827148
    方案abcdabcdabcd
    尺寸${{{\boldsymbol{V}}_1}} $$2{{{\boldsymbol{V}}_1}} $$2{{{\boldsymbol{V}}_1}} $$2{{{\boldsymbol{V}}_1}} $${{{\boldsymbol{V}}_2}} $$2{{{\boldsymbol{V}}_2}} $$2{{{\boldsymbol{V}}_2}} $$2{{{\boldsymbol{V}}_2}} $${{{\boldsymbol{V}}_3}} $$2{{{\boldsymbol{V}}_3}} $$2{{{\boldsymbol{V}}_3}} $$2{{{\boldsymbol{V}}_3}} $
    切片层数19038038038020841741741730606060
    切片时间 (min)0.10.43.10.60.20.64.10.90.10.20.80.2
    打印时间 (min)1854575821596466391111
    总时间 (min)18.154.460.158.621.259.668.166.93.19.211.811.2
    下载: 导出CSV
  • [1] Steuben J C, Iliopoulos A P, Michopoulos J G. Implicit slicing for functionally tailored additive manufacturing. Computer-Aided Design, 2016, 77:107-119 doi: 10.1016/j.cad.2016.04.003
    [2] Ngo T D, Kashani A, Imbalzano G, et al. Additive manufacturing (3D printing): A review of materials, methods, applications and challenges. Composites Part B Engineering, 2018, 143:172-196 doi: 10.1016/j.compositesb.2018.02.012
    [3] Dizon J R C, Espera A H, Chen Q, et al. Mechanical characterization of 3D-printed polymers. Additive Manufacturing, 2018, 20:44-67 doi: 10.1016/j.addma.2017.12.002
    [4] Brajlih T, Valentan B, Balic J, et al. Speed and accuracy evaluation of additive manufacturing machines. Rapid Prototyping Journal, 2011, 17(1):64-75 doi: 10.1108/13552541111098644
    [5] Ahn D, Kim H, Lee S. Fabrication direction optimization to minimize post-machining in layered manufacturing. International Journal of Machine Tools & Manufacture, 2007, 47(3-4):593-606
    [6] 刘利刚, 徐文鹏, 王伟明, et al. 3D打印中的几何计算研究进展. 计算机学报, 2015, 38(6):1243-1267

    Liu Li-Gang, Xu Wen-Peng, Wang Wei-Ming, et al. Survey on geometric computing in 3D printing. Chinese Journal of Computers, 2015, 38(6):1243-1267
    [7] 吴芬芬, 刘利刚. 3D打印物体的稳定平衡优化. 计算机研究与发展, 2017, 54(3):549-556

    Wu Fen-Fen, Liu Li-Gang. Stable equilibrium optimization for 3D printed objects, Journal of Computer Research and Development, 2017, 54(3):549-556
    [8] Oropallo W, Piegl L A. Ten challenges in 3D printing. Engineering with Computers, 2016, 32(1):135-148 doi: 10.1007/s00366-015-0407-0
    [9] 李轩, 莫红, 李双双, 王飞跃. 3D打印技术过程控制问题研究进展. 自动化学报, 2016, 42(7): 983−1003

    Li Xuan, Mo Hong, Li Shuang-Shuang, Wang Fei-Yue. Research progress on 3D printing technology process control problem. Acta Automatica Sinica, 2016, 42(7): 983−1003
    [10] 邱志惠, 陈号, 黄祺, 等. 面曝光3D打印机光强检测补偿系统研究与实现. 西安交通大学学报, 2017, 51(8):77-83

    Qiu Zhi-Hui, Chen Hao, Huang Qi, et al. Measurement and compensation of DLP projector light intensity for mask projection stereolithography. Journal of Xi'an Jiaotong University, 2017, 51(8):77-83
    [11] 方浩博, 陈继民. 基于数字光处理技术的3D打印技术. 北京工业大学学报, 2015, 41(12):1775-1782

    Fang Hao-Bo, Chen Ji-Min. 3D printing based on digital light processing technology. Journal of Beijing University of Technology, 2015, 41(12):1775-1782
    [12] Smith J M. Method and Apparatus for Creating Three-dimensional Objects by Cross-sectional Lithography, U.S. Patent 6500378B1, December 2002
    [13] Wu C, Yi R, Liu Y J, He Y, Wang C L. Delta DLP 3D printing with large size. In: Proceedings of the 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems. Daejeon, South Korea: IEEE, 2016. 2155−2160
    [14] Wu L, Zhao L, Jian M, et al. EHMP-DLP: multi-projector DLP with energy homogenization for large-size 3D printing. Rapid Prototyping Journal, 2018, 24(9):1500-1510 doi: 10.1108/RPJ-04-2017-0060
    [15] Bertsch A, Zissi S, J. Y. Jézéquel, et al. Microstereophotolithography using a liquid crystal display as dynamic mask-generator. Microsystem Technologies, 1997, 3(2):42-47 doi: 10.1007/s005420050053
    [16] 沈震, 唐迪, 熊刚, 王飞跃. 3D 打印系统, 中国 201480000261.1, 2014. 10

    Shen Zhen, Tang Di, Xiong Gang, Wang Fei-Yue. 3D Printing System, China 201480000261.1, October 2014
    [17] Kumar V, Debasish D. An assessment of data formats for layered manufacturing. Advances in Engineering Software, 1997, 28(3):151-164 doi: 10.1016/S0965-9978(96)00050-6
  • 加载中
图(13) / 表(2)
计量
  • 文章访问数:  498
  • HTML全文浏览量:  358
  • PDF下载量:  70
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-09-23
  • 录用日期:  2020-08-14
  • 网络出版日期:  2022-05-13
  • 刊出日期:  2022-07-01

目录

    /

    返回文章
    返回