2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于残差的门控循环单元

张忠豪 董方敏 胡枫 吴义熔 孙水发

张忠豪, 董方敏, 胡枫, 吴义熔, 孙水发. 基于残差的门控循环单元. 自动化学报, 2022, 48(12): 3067−3074 doi: 10.16383/j.aas.c190591
引用本文: 张忠豪, 董方敏, 胡枫, 吴义熔, 孙水发. 基于残差的门控循环单元. 自动化学报, 2022, 48(12): 3067−3074 doi: 10.16383/j.aas.c190591
Zhang Zhong-Hao, Dong Fang-Min, Hu Feng, Wu Yi-Rong, Sun Shui-Fa. Residual based gated recurrent unit. Acta Automatica Sinica, 2022, 48(12): 3067−3074 doi: 10.16383/j.aas.c190591
Citation: Zhang Zhong-Hao, Dong Fang-Min, Hu Feng, Wu Yi-Rong, Sun Shui-Fa. Residual based gated recurrent unit. Acta Automatica Sinica, 2022, 48(12): 3067−3074 doi: 10.16383/j.aas.c190591

基于残差的门控循环单元

doi: 10.16383/j.aas.c190591
基金项目: 国家自然科学基金(U1703261, 61871258), 国家重点研发计划(2016-YFB0800403)资助
详细信息
    作者简介:

    张忠豪:三峡大学硕士研究生. 主要研究方向为人工智能和自然语言处理. E-mail: zhangminecraftbiu@gmail.com

    董方敏:三峡大学教授. 主要研究方向为计算图形学, 计算机视觉和人工智能. E-mail: fmdong@ctgu.edu.cn

    胡枫:三峡大学硕士研究生. 主要研究方向为自然语言处理. E-mail: h18271692608@163.com

    吴义熔:三峡大学教授. 主要研究方向为人工智能和自然语言处理. E-mail: yirongwu@gmail.com

    孙水发:三峡大学教授. 主要研究方向为多媒体信息处理和智能信息处理. 本文通信作者.E-mail: watersun@ctgu.edu.cn

Residual Based Gated Recurrent Unit

Funds: Supported by National Natural Science Foundation of China (U17-03261, 61871258) and National Key Research and Development Pro-ject (2016YFB0800403)
More Information
    Author Bio:

    ZHANG Zhong-Hao Master student at China Three Gorges University. His research interest covers artifici-al intelligence and nature language processing

    DONG Fang-Min Professor at China Three Gorges University. His research interest covers computer graphics, computer vision and artificial intelligence

    HU Feng Master student at China Three Gorges University. His main research interest is nature language pro-cessing

    WU Yi-Rong Professor at China Three Gorges University. His research interest covers artificial intelligence and nature language processing

    SUN Shui-Fa Professor at China Three Gorges University. His research interest covers multi-media information processing and intelligent information processing. Corresponding author of this paper

  • 摘要: 传统循环神经网络易发生梯度消失和网络退化问题. 利用非饱和激活函数可以有效克服梯度消失的性质, 同时借鉴卷积神经网络中的残差结构能够有效缓解网络退化的特性, 在门控循环神经网络(Gated recurrent unit, GRU)的基础上提出了基于残差的门控循环单元(Residual-GRU, Re-GRU)来缓解梯度消失和网络退化问题. Re-GRU的改进主要包括两个方面: 1)将原有GRU的候选隐状态的激活函数改为非饱和激活函数; 2)在GRU的候选隐状态表示中引入残差信息. 对候选隐状态激活函数的改动不仅可以有效避免由饱和激活函数带来的梯度消失问题, 同时也能够更好地引入残差信息, 使网络对梯度变化更敏感,从而达到缓解网络退化的目的. 进行了图像识别、构建语言模型和语音识别3类不同的测试实验, 实验结果均表明, Re-GRU拥有比对比方法更高的检测性能, 同时在运行速度方面优于Highway-GRU和长短期记忆单元. 其中, 在语言模型预测任务中的Penn Treebank数据集上取得了23.88的困惑度, 相比有记录的最低困惑度, 该方法的困惑度降低了一半.
  • 图  1  GRU单元结构

    Fig.  1  GRU structure

    图  2  高速公路网络结构

    Fig.  2  Highway-network structure

    图  3  残差网络结构[11]

    Fig.  3  Residual-Networks structure[11]

    图  4  Re-GRU结构

    Fig.  4  Re-GRU structure

    图  5  7层网络的GRU、GRU-relu、Re-GRU在MNIST数据集上的损失变化曲线

    Fig.  5  Loss curve of GRU, GRU-relu and Re-GRU on the MNIST data set of a seven-layer network

    图  6  GRU与Re-GRU在PTB数据集上的损失值变化曲线

    Fig.  6  Loss curve of GRU and Re-GRU on PTB dataset

    图  7  GRU与Re-GRU在TIMIT数据集上的损失值变化曲线

    Fig.  7  Loss curve of GRU and Re-GRU on TIMIT dataset

    表  1  MNIST数据集测试结果 (%)

    Table  1  MNIST dataset test results (%)

    模型 1 层网络 3 层网络 5 层网络 7 层网络 9 层网络
    RNN 52 12 9 10 10
    GRU 92 92 11 11 10
    LSTM 94 91 10 9 10
    RNN-relu 67 72 63 56 9
    GRU-relu 93 93 80 76 11
    SRU 86 94 93 93 93
    Highway-GRU 89 95 94 92 33
    Re-GRU 97 96 94 95 94
    下载: 导出CSV

    表  2  PTB的测试结果 (PPL, s)

    Table  2  PTB dataset test results (PPL, s)

    模型 3 层网络
    5 层网络 7 层网络
    RNN 142.37, 149 135.56, 188 143.68, 214
    GRU 59.73, 467 50.03, 584 50.25, 750
    LSTM 56.42, 409 41.03, 542 84.27, 915
    RNN-relu 125.83, 81 115.79, 164 117.32, 257
    GRU-relu 96.71, 453 57.03, 602 90.14, 763
    SRU 104.93, 206 124.18, 334 143.77, 432
    Highway-GRU 99.77, 523 108.13, 834 88, 1176
    Re-GRU 24.32, 378 23.88, 682 25.14, 866
    下载: 导出CSV

    表  3  WikiText-2的测试结果(PPL, s)

    Table  3  WikiText-2 dataset test results (PPL, s)

    模型 7 层网络
    RNN 155.43, 235
    GRU 43.87, 618
    LSTM 29.00, 733
    SRU 159.39, 514
    Re-GRU 23.88, 644
    下载: 导出CSV

    表  4  TIMIT的测试结果(%, s)

    Table  4  TIMIT dataset test results (%, s)

    模型 3 层网络 5 层网络 7 层网络
    RNN 22.5, 151 23.7, 225 23.9, 295
    GRU 18.3, 389 18.2, 620 18.5, 854
    LSTM 17.4, 478 17.2, 777 17.9, 1080
    RNN-relu 18.3, 154 18.4, 239 18.6, 302
    GRU-relu 17.3, 385 17.9, 616 17.8, 853
    SRU 17.4, 404 18.3, 656 18.4, 924
    Highway-GRU 18.0, 549 18.1, 908 17.5, 1294
    Li-GRU 17.6, 287 17.9, 478 18.1, 630
    Re-GRU 17.8, 427 17.5, 703 17.1, 984
    下载: 导出CSV
  • [1] Graves A, Jaitly N, Mohamed A. Hybrid speech recognition with deep bidirectional LSTM. In: Proceedings of the 2013 IEEE Workshop on Automatic Speech Recognition and Understanding. Olomouc, Czech Republic: 2013. 273−278
    [2] Mikolov T, Zweig G. Context dependent recurrent neural network language model. In: Proceedings of the 2012 IEEE Spoken Language Technology Workshop. Miami, USA: 2012. 234−239
    [3] Zhao B, Tam Y C. Bilingual recurrent neural networks for improved statistical machine translation. In: Proceedings of the 2014 IEEE Spoken Language Technology Workshop. South Lake Tahoe, USA: 2014. 66−70
    [4] 奚雪峰, 周国栋. 面向自然语言处理的深度学习研究. 自动化学报, 2016, 42(10): 1445-1465

    Xi Xue-Feng, Zhou Guo-Dong. A survey on deep learning for natural language processing. Acta Automatica Sinica, 2016, 42(10): 1445-1465
    [5] Hochreiter S. The vanishing gradient problem during learning recurrent neural nets and problem solutions. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 1998, 6(02): 107-116 doi: 10.1142/S0218488598000094
    [6] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation, 1997, 9(8): 1735-1780 doi: 10.1162/neco.1997.9.8.1735
    [7] Sutskever I, Vinyals O, Le Q V. Sequence to sequence learning with neural networks. In: Proceedings of the 27th International Conference on Neural Information Processing Systems-Volume 2. Kuching, Malaysia, 2014: 3104−3112
    [8] Morgan N. Deep and wide: Multiple layers in automatic speech recognition. IEEE. Transactions on Audio, Speech, and Language Processing, 2011, 20(1): 7−13
    [9] Srivastava R K, Greff K, Schmidhuber J. Training very deep networks. In: Proceedings of the 28th International Conference on Neural Information Processing Systems. Montreal, Canada: 2015. 2377−2385
    [10] Orhan E, Pitkow X. Skip Connections eliminate singularities. In: Proceedings of the International Conference on Learning Representations. Vancouver, Canada: 2018. 1−22
    [11] He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, USA: 2016. 770−778
    [12] Lei T, Zhang Y, Wang S I, Dai H, Artzi Y. Simple recurrent units for highly parallelizable recurrence. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Brussels, Belgium: 2018. 4470−4481
    [13] 张文, 冯洋, 刘群. 基于简单循环单元的深层神经网络机器翻译模型. 中文信息学报, 2018, 32(10): 36-44 doi: 10.3969/j.issn.1003-0077.2018.10.006

    Zhang Wen, Feng Yang, Liu Qun. Deep Neural Machine Translation Model Based on Simple Recurrent Units. Journal of Chinese Information Processing, 2018, 32(10): 36-44 doi: 10.3969/j.issn.1003-0077.2018.10.006
    [14] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: Proceedings of the 32nd International Conference on Machine Learning. Lille, France: 2015. 448−456
    [15] Glorot X, Bengio Y. Understanding the difficulty of training deep feedforward neural networks. In: Proceedings of the 13th International Conference on Artificial Intelligence and Statistics. Sardinia, Italy: 2010: 249−256
    [16] Ravanelli M, Brakel P, Omologo M, et al. Light gated recurrent units for speech recognition. IEEE Transactions on Emerging Topics in Computational Intelligence, 2018, 2(2): 92-102 doi: 10.1109/TETCI.2017.2762739
    [17] Vydana H K, Vuppala A K. Investigative study of various activation functions for speech recognition. In: Proceedings of the 23th National Conference on Communications. Chennai, India: 2017. 1−5
    [18] Deng L. The MNIST database of handwritten digit images for machine learning research[best of the web]. IEEE Signal Processing Magazine, 2012, 29(6): 141-142 doi: 10.1109/MSP.2012.2211477
    [19] Marcus M P, Marcinkiewicz M A, Santorini B. Building a Large Annotated Corpus of English: The Penn Treebank. Computational Linguistics, 2002, 19(2): 313-330
    [20] Melis G, Dyer C, Blunsom P. On the state of the art of evaluation in neural language models. In: Proceedings of the 2018 International Conference on Learning Representations. Vancouver, Canada: 2018. 1−10
    [21] Ravanelli M, Parcollet T, Bengio Y. The Pytorch-Kaldi speech recognition toolkit. In: Proceedings of the ICASSP 2019 IEEE International Conference on Acoustics, Speech and Signal Processing. Brighton, UK: 2019. 6465−6469
    [22] Oualil Y, Klakow D. A Neural Network approach for mixing language models. In: Proceedings of the 2017 IEEE International Conference on Acoustics, Speech and Signal Processing. New Orleans, USA: IEEE, 2017. 5710−5714
    [23] Zue V, Seneff S, Glass J. Speech database development at MIT: TIMIT and beyond. Speech communication, 1990, 9(4): 351-356 doi: 10.1016/0167-6393(90)90010-7
    [24] Arnab G, Gilles B, Luk'as B, Ondrej G, Nagendra G, Mirko H, et al. The Kaldi speech recognition toolkit. In: Proceedings of the 2011 IEEE Workshop on Automatic Speech Recognition and Understanding. Hawaii, USA: 2011. 59−64
    [25] Le Q V, Jaitly N, Hinton G E. A simple way to initialize recurrent networks of rectified linear units. arXiv preprint, 2015, arXiv: 1504.00941
  • 加载中
图(7) / 表(4)
计量
  • 文章访问数:  586
  • HTML全文浏览量:  254
  • PDF下载量:  166
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-08-18
  • 录用日期:  2020-01-17
  • 网络出版日期:  2022-12-23
  • 刊出日期:  2022-12-23

目录

    /

    返回文章
    返回