The Multi-depot Vehicle Routing Problem With Simultaneous Deterministic Delivery and Stochastic Pickup Based on Joint Distribution
-
摘要:
针对多中心联合配送模式下集货需求随机的同时配集货车辆路径问题(MDVRPSDDSPJD), 构建了两阶段MDVRPSDDSPJD模型. 预优化阶段基于随机机会约束机制以及车载量约束为客户分配车辆, 生成预优化方案; 重优化阶段采用失败点重优化策略对服务失败点重新规划路径. 根据问题特征, 设计了自适应变邻域文化基因算法(Adaptive memetic algorithm and variable neighborhood search, AMAVNS), 针对文化基因算法易早熟、局部搜索能力弱等缺陷, 将变邻域搜索算法的深度搜索能力运用到文化基因算法的局部搜索策略中, 增强算法的局部搜索能力; 提出自适应邻域搜索次数策略和自适应劣解接受机制平衡种群进化所需的广度和深度. 通过多组算例验证了提出模型及算法的有效性. 研究成果不仅深化和拓展了VRP (Vehicle routing problem)相关理论研究, 也为物流企业制定车辆调度计划提供一种科学合理的方法.
Abstract:A two-stage model is constructed to solve the multi-depot vehicle routing problem with simultaneous deterministic delivery and stochastic pickup based on joint distribution (MDVRPSDDSPJD). In pre-optimization stage, the pre-optimization scheme is generated, and the vehicles is assigned to the customers based on the stochastic chance constrained and vehicle capacity constraints. In re-optimization stage, the failure points rescheduling strategy is used to re-plan the path of the service failure points. According to the characteristics of the problem, a metaheuristic combined adaptive memetic algorithm and variable neighborhood search (AMAVNS) is designed to solve the problem. In this metaheuristic, aiming at the shortcomings of memetic algorithm such as fast convergence speed and weak local search capability, the deep search ability of the variable neighborhood search algorithm is applied to the local search strategy of the memetic algorithm to enhance the local search ability of the algorithm. The strategies include self-adaptive number of neighborhood iterations and adaptive mechanism of selective acceptance of inferior solutions are used to balance the diversification and exploitation in the algorithm iteration process. Numerical results show that the model and metaheuristic we proposed are rather effective. The research results not only deepen and expand the vehicle routing problem (VRP) theory research, but also provide a scientific and reasonable method for logistics enterprises to draw up the vehicle scheduling plan.
-
表 1 算法性能比较
Table 1 Performance comparison of different types of metaheuristics
算法 $BKS$ $Best$ ${\text{%}}Dev$(%) $Worst$ ${\text{%}}Dev$(%) $Avg$ ${\text{%}}Dev$(%) $CPU\,({\rm{s} })$ 聚类分层法[22] 116.01 123.33 6.31 狼群算法[23] 122.42 5.53 禁忌搜索算法[24] 116.01 0.00 343.31 195.93 187.34 61.49 243.00 量子遗传算法[24] 116.01 0.00 326.48 181.42 176.37 52.03 216.00 云量子遗传算法[24] 116.01 0.00 162.38 39.97 156.32 34.75 168.00 自适应变邻域文化基因算法 113.62 −2.06 115.39 −0.53 114.33 −1.45 4.78 表 2 本文算法求解路径
Table 2 The algorithm solution path of this paper
算法 车辆行驶路径 总路程 本文 A-22-30-14-10-7-4-A 113.62 B-11-29-28-13-8-15-1-B C-16-25-5-12-26-18-3-6-C C-17-21-19-20-23-24-2-9-27-C 表 3 MDVRP算例结果比较
Table 3 The results comparison of MDVRP instances
算例 客户规模 $BKS$ GRASP/VND[25] GA[26] ILS[27] AMAVNS $Best$ ${\text{%}}Dev$(%) $Best$ ${\text{%}}Dev$(%) $Best$ ${\text{%}}Dev$(%) $Best$ ${\text{%} }Dev\ ({\text{%} })$ $CPU\, ({\rm{s} })$ p01 50 576.87 592.21 2.66 598.45 3.74 606.11 5.07 576.87 0.00 32.60 p02 50 473.53 529.64 11.85 478.65 1.08 496.45 4.84 473.53 0.00 39.22 p03 75 641.19 648.68 1.17 699.23 9.05 675.32 5.32 646.33 0.80 84.06 p04 100 1 001.59 1 055.26 5.36 1 011.36 0.98 1 062.60 6.09 1 039.69 3.80 155.23 p05 100 750.03 769.37 2.58 — — 782.34 4.31 765.98 2.13 143.73 p06 100 876.50 924.68 5.50 882.88 0.72 910.13 3.84 902.27 2.94 164.82 p07 100 885.80 925.80 4.52 — — 904.44 2.10 909.22 2.64 159.01 表 4 VRPSDP算例结果比较
Table 4 The results comparison of VRPSDP instances
算例 TS[29] EPSA3[30] SavAnt[31] SS[32] AMAVNS $Best$ ${\text{%}}Dev$(%) $CPU\,({\rm{s} })$ $Best$ ${\text{%}}Dev$(%) $CPU \,({\rm{s} })$ $Best$ ${\text{%}}Dev$(%) $CPU\,({\rm{s} })$ $Best$ ${\text{%}}Dev$(%) $Best$ ${\text{%}}Dev$(%) $CPU\,({\rm{s} })$ SCA8-0 981.47 2.07 4.14 1 015.06 5.57 — 961.6 0.01 — 981.17 2.05 961.50 0.00 35.31 SCA8-1 1 077.44 2.65 4.27 1 098.91 4.69 — 1 063.0 1.27 — 1 077.44 2.65 1 049.65 0.00 42.05 SCA8-2 1 050.98 1.00 4.20 1 064.54 2.30 — 1 040.6 0.00 — 1 050.98 1.00 1 049.22 0.83 36.63 SCA8-3 983.34 0.00 4.17 1 021.61 3.89 — 985.9 0.26 — 983.34 0.00 983.34 0.00 31.59 SCA8-4 1 073.46 0.55 4.13 1 114.50 4.40 — 1 071.0 0.32 — 1 073.46 0.55 1 065.49 0.00 42.87 SCA8-5 1 047.24 1.68 4.02 1 060.43 2.96 — 1 054.3 2.36 — 1 047.24 1.68 1 029.95 0.00 38.19 SCA8-6 995.59 2.37 3.85 1 004.66 3.31 — 972.5 0.00 — 995.59 2.37 973.27 0.08 34.88 SCA8-7 1 068.56 0.84 4.22 1 080.17 1.93 — 1 059.7 0.00 — 1 068.56 0.84 1 063.22 0.33 29.01 SCA8-8 1 080.58 0.88 3.85 1 098.02 2.51 — 1 082.7 1.08 — 1 080.58 0.88 1 071.18 0.00 33.54 SCA8-9 1 084.80 1.32 4.20 1 123.55 4.94 — 1 081.4 1.00 — 1 084.80 1.32 1 070.71 0.00 46.03 CON8-0 860.48 0.39 4.19 857.17 0.00 — 858.9 0.20 — 860.48 0.39 857.40 0.03 37.86 CON8-1 740.85 0.00 3.89 742.41 0.21 — 740.9 0.01 — 740.85 0.00 740.85 0.00 40.75 CON8-2 723.32 1.38 3.76 715.17 0.24 — 714.3 0.12 — 723.32 1.38 713.44 0.00 35.99 CON8-3 811.23 0.00 4.12 815.59 0.54 — 812.3 0.13 — 811.23 0.00 811.23 0.00 39.37 CON8-4 772.25 0.28 3.75 789.13 2.47 — 770.1 0.00 — 772.25 0.28 772.25 0.28 41.22 CON8-5 756.91 0.23 3.99 759.09 0.52 — 766.6 1.51 — 756.91 0.23 755.16 0.00 40.84 CON8-6 678.92 0.00 4.04 707.83 4.26 — 697.2 2.69 — 678.92 0.00 684.11 0.76 53.95 CON8-7 814.50 0.00 4.00 834.64 2.47 — 814.8 0.04 — 814.50 0.00 814.77 0.03 49.99 CON8-8 775.59 1.05 3.74 787.43 2.59 −771.3 0.49 — 775.59 1.05 767.53 0.00 33.40 CON8-9 809.00 0.00 4.13 813.84 0.60 — 815.1 0.75 — 809.00 0.00 809.00 0.00 34.21 平均值 909.33 0.83 4.03 925.19 2.52 2.98 906.71 0.61 441 909.31 0.83 902.27 0.12 39.38 表 5 MDVRPSDDSPJD算例结果比较
Table 5 The results comparison of MDVRPSDDSPJD
$\alpha$ 规则1 规则2 $Best$ $Avg$ $CPU\,({\rm{s} })$ $Best$ ${\text{%}}Dev$(%) $Avg$ ${\text{%}}Dev$(%) $CPU\;({\rm{s} })$ 0.1 558.98 732.61 98.85 548.86 −1.81 674.40 −7.95 101.57 0.2 565.26 726.67 92.75 549.51 −2.79 673.54 −7.31 110.48 0.3 545.30 713.16 97.43 542.30 −0.55 676.67 −5.12 108.43 0.4 568.42 713.75 108.26 550.14 −3.22 678.61 −4.92 102.49 0.5 549.96 709.65 105.43 543.59 −1.16 650.79 −8.29 109.47 0.6 548.04 651.97 105.67 537.83 −1.86 640.07 −1.83 114.64 0.7 533.85 624.97 102.20 499.96 −6.35 610.54 −2.31 101.35 0.8 545.30 668.99 110.46 537.83 −1.37 641.70 −4.08 148.57 0.9 546.83 657.50 90.26 537.44 −1.72 653.35 −0.63 96.84 1.0 564.64 655.98 95.33 563.24 −0.25 650.85 −0.78 110.28 平均值 552.66 685.53 100.66 541.07 −2.10 655.05 −4.45 110.41 表 6 MDVRPSDDSPJD算例求解最优解
Table 6 The best solutions of MDVRPSDDSPJD
车辆行驶路径 车辆数 总路程 规则 1 51-4-18-13-41-40-19-42-51 8 533.85 53-38-5-37-17-44-15-45-33-39-10-49-53 53-30-34-21-16-50-9-53 54-20-3-36-35-54 52-11-32-27-48-23-7-43-24-52 54-29-2-1-8-26-31-28-22-54 52-47-12-46-52 52-6-14-25-52 规则 2 54-20-2-16-21-29-54 7 499.96 54-35-36-3-28-31-26-8-22-54 53-38-5-37-17-44-15-45-33-39-10-49-53 52-46-11-32-1-27-48-23-7-43-24-6-52 51-42-19-40-41-13-25-14-52 52-12-47-18-4-51 53-30-34-50-9-53 -
[1] Dantzig G B, Ramser J H. The truck dispatching problem. Management Science, 1959, 6(1): 80−91 doi: 10.1287/mnsc.6.1.80 [2] 葛显龙, 王旭, 邓蕾. 基于联合配送的开放式动态车辆路径问题及算法研究. 管理工程学报, 2013, 27(3): 60−68 doi: 10.3969/j.issn.1004-6062.2013.03.008Ge Xian-Long, Wang Xu, Deng Lei. Research on open and dynamic vehicle routing problems based on joint distribution. Journal of Industrial Engineering and Engineering Management, 2013, 27(3): 60−68 doi: 10.3969/j.issn.1004-6062.2013.03.008 [3] 杨翔, 范厚明, 张晓楠, 李阳. 基于模糊时间窗的多中心开放式车辆路径问题. 计算机集成制造系统, 2016, 22(7): 1768−1778Yang Xiang, Fan Hou-Ming, Zhang Xiao-Nan, Li Yang. Optimization of multi-deport open vehicle routing problem with fuzzy time window. Computer Integrated Manufacturing Systems, 2016, 22(7): 1768−1778 [4] Gruler A, Fikar C, Juan A A, Hirsch P, Contreras-Bolton C. Supporting multi-depot and stochastic waste collection management in clustered urban areas via simulation-optimization. Journal of Simulation, 2017, 11(1): 11−19 doi: 10.1057/s41273-016-0002-4 [5] Alinaghian M, Shokouhi N. Multi-depot multi-compartment vehicle routing problem, solved by a hybrid adaptive large neighborhood search. Omega, 2018, 76(3): 85−99 [6] 葛显龙, 邹登波. 供应链环境下带越库配送的多配送中心车辆路径问题. 控制与决策, 2018, 33(12): 2169−2176Ge Xian-Long, Zou Deng-Bo. Vehicle routing problem of multi-distribution centers with cross-docking in the supply chain. Control and Decision, 2018, 33(12): 2169−2176 [7] 陈呈频, 韩胜军, 鲁建厦, 陈青丰, 王成. 多车场与多车型车辆路径问题的多染色体遗传算法. 中国机械工程, 2018, 29(2): 218−223 doi: 10.3969/j.issn.1004-132X.2018.02.014Chen Cheng-Pin, Han Sheng-Jun, Lu Jian-Sha, Chen Qing-Feng, Wang Cheng. A multi-chromosome genetic algorithm for multi-depot and multi-type vehicle routing problems. China Mechanical Engineering, 2018, 29(2): 218−223 doi: 10.3969/j.issn.1004-132X.2018.02.014 [8] Wang Y, Assogba K, Xu M Z, Liu Y, Wang H Z. Multi-depot green vehicle routing problem with shared transportation resource: Integration of time-dependent speed and piecewise penalty cost. Journal of Cleaner Production, 2019, 232(27): 12−29 [9] Li Y B, Soleimani H, Zohal M. An improved ant colony optimization algorithm for the multi-depot green vehicle routing problem with multiple objectives. Journal of Cleaner Production, 2019, 227(22): 1161−1172 [10] Li J, Pardalos P M, Sun H, Pei J, Zhang Y. Iterated local search embedded adaptive neighborhood selection approach for the multi-depot vehicle routing problem with simultaneous deliveries and pickups. Expert Systems With Applications an International Journal, 2015, 42(7): 3551−3561 doi: 10.1016/j.eswa.2014.12.004 [11] Kachitvichyanukul V, Sombuntham P, Kunnapapdeelert S. Two solution representations for solving multi-depot vehicle routing problem with multiple delivery and pickup requests via PSO. Computers & Industrial Engineering, 2015, 89(11): 125−136 [12] Soriano A, Gansterer M, Hartl R F. The two-region multi-depot delivery and pickupproblem. Or Spectrum, 2018, 40(4): 1077−1108 doi: 10.1007/s00291-018-0534-2 [13] Ben Alaia E, Harbaoui I, Borne P, Bouchriha H. A comparative study of the PSO and GA for the m-MDPDPTW. International Journal of Computers Communications & Control, 2018, 13(1): 8−23 [14] Bouanane K, Benadada Y, Bencheikh G. Multi-depots vehicle routing problem with simultaneous delivery and pickup and inventory restrictions: Formulation and resolution. International Journal of Advanced Computer Science and Applications, 2019, 10(2): 110−120 [15] Gauvin C, Desaulniers G, Gendreau M. A branch-cut-and-price algorithm for the vehicle routing problem with stochastic demands. Computers & Operations Research, 2014, 50(10): 141−153 [16] Yang W H, Mathur K, Ballou R H. Stochastic vehicle routing problem with restocking. Transportation Science, 2000, 34(1): 99−112 doi: 10.1287/trsc.34.1.99.12278 [17] 谢秉磊, 安实, 郭耀煌. 随机车辆路径问题的多回路优化策略. 系统工程理论与实践, 2007, 27(2): 167−171 doi: 10.3321/j.issn:1000-6788.2007.02.024Xie Bing-Lei, An Shi, Guo Yao-Huang. Multi-tour optimization policy for stochastic vehicle routing problem. Systems Engineering-theory & Practice, 2007, 27(2): 167−171 doi: 10.3321/j.issn:1000-6788.2007.02.024 [18] 赵燕伟, 李川, 张景玲, 陆游, 王万良. 一种新的求解多目标随机需求车辆路径问题的算法. 计算机集成制造系统, 2012, 18(3): 523−530Zhao Yan-Wei, Li Chuan, Zhang Jing-Ling, Lu You, Wang Wan-Liang. Novel algorithm for multi-objective vehicle routing problem with stochastic demand. Computer Integrated Manufacturing Systems, 2012, 18(3): 523−530 [19] Hu Z H, Sheu J B, Zhao L, Lu C C. A dynamic closed-loop vehicle routing problem with uncertainty and incompatible goods. Transportation Research Part C, 2015, 55(6): 273−297 [20] 李阳, 范厚明, 张晓楠, 杨翔. 随机需求车辆路径问题及混合变邻域分散搜索算法求解. 控制理论与应用, 2017, 34(12): 1594−1604 doi: 10.7641/CTA.2017.60888Li Yang, Fan Hou-Ming, Zhang Xiao-Nan, Yang Xiang. Two-phase variable neighborhood scatter search for the capacitated vehicle routing problem with stochastic demand. Control Theory & Applications, 2017, 34(12): 1594−1604 doi: 10.7641/CTA.2017.60888 [21] 郎茂祥. 多配送中心车辆调度问题的模型与算法研究. 交通运输系统工程与信息, 2006, 6(5): 65−69 doi: 10.3969/j.issn.1009-6744.2006.05.011Lang Mao-Xiang. Study on the model and algorithm for multi-depot vehicle scheduling problem. Journal of Transportation Systems Engineering and Information Technology, 2006, 6(5): 65−69 doi: 10.3969/j.issn.1009-6744.2006.05.011 [22] 殷脂, 叶春明. 多配送中心物流配送车辆调度问题的分层算法模型. 系统管理学报, 2014, 6(4): 602−606Yin Zhi, Ye Chun-Ming. Study on the hierarchical model for multi-depot logistic vehicle scheduling problem. Journal of Systems & Management, 2014, 6(4): 602−606 [23] 叶勇, 张惠珍. 多配送中心车辆路径问题的狼群算法. 计算机应用研究, 2017, 34(9): 36−39Ye Yong, Zhang Hui-Zhen. Wolf pack algorithm for multi-depot vehicle routing problem. Application Research of Computers, 2017, 34(9): 36−39 [24] 葛显龙, 许茂增, 王伟鑫. 基于联合配送的城市物流配送路径优化. 控制与决策, 2016, 31(3): 503−512Ge Xian-Long, Xu Mao-Zeng, Wang Wei-Xin. Route optimization of urban logistics in joint distribution. Control and Decision, 2016, 31(3): 503−512 [25] Villegas J G, Prins C, Prodhon C, Medaglia A. GRASP/VND and multi-start evolutionary local search for the single truck and trailer routing problem with satellite depots. Engineering Applications of Artificial Intelligence, 2010, 623(5): 780−794 [26] Karakatic S, Podgorelec V. A survey of genetic algorithms for solving multi depot vehicle routing problem. Applied Soft Computing Journal, 2015, 27(C): 519−532 [27] Tlili T, Krichen S, Drira G, Faiz S. On solving the multi-depot vehicle routing problem. In: Proceedings of the 3rd International Conference on Advanced Computing, Networking and Informatics. New Delhi: Springer, 2016. 103-108 [28] Dethloff J. Vehicle routing and reverse logistics: The vehicle routing problem with simultaneous delivery and pick-up. OR-Spektrum, 2001, 23(1): 79−96 doi: 10.1007/PL00013346 [29] Montané F A T, Galvao R D. A tabu search algorithm for the vehicle routing problem with simultaneous pick-up and delivery service. Science Technology & Engineering, 2006, 33(3): 595−619 [30] Gajpal Y, Abad P. Saving-based algorithms for vehicle routing problem with simultaneous pickup and delivery. Journal of the Operational Research Society, 2010, 61(10): 1498−1509 doi: 10.1057/jors.2009.83 [31] Catay B. A new saving-based ant algorithm for the vehicle routing problem with simultaneous delivery and pickup. Expert Systems With Applications, 2010, 37(10): 6809−6817 doi: 10.1016/j.eswa.2010.03.045 [32] Maquera G, Laguna M, Dan A G, Sant' Anna A P. Scatter search applied to the vehicle routing problem with simultaneous delivery and pickup. International Journal of Applied Metaheuristic Computing, 2011, 2(2): 1−20 doi: 10.4018/jamc.2011040101 [33] Salhi S, Nagy G. A cluster insertion heuristic for single and multiple depot vehicle routing problems with backhauling. Journal of the Operational Research Society, 1999, 50(10): 1034−1042 doi: 10.1057/palgrave.jors.2600808