2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

SealGAN: 基于生成式对抗网络的印章消除研究

李新利 邹昌铭 杨国田 刘禾

李新利, 邹昌铭, 杨国田, 刘禾. SealGAN: 基于生成式对抗网络的印章消除研究. 自动化学报, 2021, 47(11): 2614−2622 doi: 10.16383/j.aas.c190459
引用本文: 李新利, 邹昌铭, 杨国田, 刘禾. SealGAN: 基于生成式对抗网络的印章消除研究. 自动化学报, 2021, 47(11): 2614−2622 doi: 10.16383/j.aas.c190459
Li Xin-Li, Zou Chang-Ming, Yang Guo-Tian, Liu He. SealGAN: Research on the seal elimination based on generative adversarial network. Acta Automatica Sinica, 2021, 47(11): 2614−2622 doi: 10.16383/j.aas.c190459
Citation: Li Xin-Li, Zou Chang-Ming, Yang Guo-Tian, Liu He. SealGAN: Research on the seal elimination based on generative adversarial network. Acta Automatica Sinica, 2021, 47(11): 2614−2622 doi: 10.16383/j.aas.c190459

SealGAN: 基于生成式对抗网络的印章消除研究

doi: 10.16383/j.aas.c190459
详细信息
    作者简介:

    李新利:华北电力大学控制与计算机工程学院副教授. 主要研究方向为模式识别与智能系统, 图像处理, 燃烧过程检测技术. 本文通信作者.E-mail: lixinli@ncepu.edu.cn

    邹昌铭:华北电力大学控制与计算机工程学院硕士研究生. 主要研究方向为深度学习, 图像处理.E-mail: 1172227195@ncepu.edu.cn

    杨国田:华北电力大学控制与计算机工程学院教授. 主要研究方向为智能机器人, 计算机视觉, 火力发电精细化燃烧与优化控制.E-mail: ygt@ncepu.edu.cn

    刘禾:华北电力大学控制与计算机工程学院教授. 主要研究方向为图像处理, 计算机视觉, 模式识别.E-mail: lh@ncepu.edu.cn

SealGAN: Research on the Seal Elimination Based on Generative Adversarial Network

More Information
    Author Bio:

    LI Xin-Li Associate professor at the School of Control and Computer Engineering, North China Electric Power University. Her research interest covers pattern recognition and intelligent system, image processing, combustion process detection technology. Corresponding author of this paper

    ZOU Chang-Ming Master student at the School of Control and Computer Engineering, North China Electric Power University. His research interest covers deep learning and image processing

    YANG Guo-Tian Professor at the School of Control and Computer Engineering, North China Electric Power University. His research interest covers intelligent robot, computer vision, fine combustion and optimal control of thermal power plant

    LIU He Professor at the School of Control and Computer Engineering, North China Electric Power University. His research interest covers image processing, computer vision, pattern recognition

  • 摘要: 发票是财务系统的重要组成部分. 随着计算机视觉和人工智能技术的发展, 出现了各种发票自动识别系统, 但是发票上的印章严重影响了识别准确率. 本文提出了一种用于自动消除发票印章的SealGAN网络. SealGAN网络是基于生成式对抗网络CycleGAN的改进, 采用两个独立的分类器来取代原本的判别网络, 从而降低单个分类器的分类要求, 提高分类器的学习性能, 并且结合ResNet和Unet两种结构构建下采样−精炼−上采样的生成网络, 生成更加清晰的发票图像. 同时提出了基于风格评价和内容评价的综合评价指标对SealGAN网络进行性能评价. 实验结果表明, 与CycleGAN-ResNet和CycleGAN-Unet网络相比较, Seal GAN网络不仅能实现自动消除印章, 而且还能更加清晰地保留印章下的发票内容, 网络性能评价指标较高.
  • 图  1  生成式对抗网络结构

    Fig.  1  Generative adversarial networks structure

    图  2  CycleGAN的网络结构

    Fig.  2  GycleGAN networks structure

    图  3  SealGAN网络结构

    Fig.  3  SealGAN networks structure

    图  4  残差网络结构

    Fig.  4  Residual networks structure

    图  5  UNet网络结构示意图

    Fig.  5  Schematic diagram of UNet structure

    图  6  SealGAN生成网络结构示意图

    Fig.  6  Schematic diagram of SealGAN generative networks structure

    图  7  三种网络在不同数据集划分比例下的性能指标

    Fig.  7  Performance indices of three networks under different division proportion of data set

    图  8  基于二次分割、CycleGAN-ResNet、CycleGAN-UNet和SealGAN的印章消除对比

    Fig.  8  Comparsion of effect of the seal elimination based on re-segmentation, CycleGAN-ResNet, CycleGAN-UNet and SealGAN

    表  1  生成网络和分类器参数表

    Table  1  Parameters of the generative network and classifier

    生成网络分类器
    下采样精炼上采样
    7×7 conv, 96Residual_block(3×3, 384) ×74×4 deconv, 256, ×24×4 conv, 64, /2
    4×4 conv, 192, /24×4 deconv, 256, ×24×4 conv, 128, /2
    4×4 conv, 384, /24×4 deconv, 256, ×24×4 conv, 256, /2
    4×4 conv, 384, /24×4 deconv, 256, ×24×4 conv, 512, /2
    4×4 conv, 384, /24×4 deconv, 128, ×24×4 conv, 1
    4×4 conv, 384, /24×4 deconv, 64, ×2
    4×4 conv, 384, /27×7 conv, 3
    下载: 导出CSV

    表  2  三种网络性能评价指标

    Table  2  Performance evaluation indices of three kinds of network

    网络类型CS1CS2$ ES $
    二次分割0.3400.9911.331
    CycleGAN-ResNet0.6780.6991.377
    CycleGAN-UNet0.7030.6791.382
    SealGAN0.6990.7401.439
    下载: 导出CSV
  • [1] 胡泽枫, 张学习, 黎贤钊. 基于卷积神经网络的批量发票识别系统研究. 工业控制计算机, 2019, 32(05): 104-105+107 doi: 10.3969/j.issn.1001-182X.2019.05.043

    Hu Ze-Feng, Zhang Xue-Xi, Li Zhao-Xian. Batch Invoice Recognition System Based on Convolutional Neural Network (CNN). Industrial Control Computer, 2019, 32(05): 104-105+107 doi: 10.3969/j.issn.1001-182X.2019.05.043
    [2] 欧阳欢, 范大昭, 李东子. 多特征融合决策的发票印章识别. 计算机工程与设计, 2018, 39(09): 2842-2847

    Ou-Yang Huan, Fan Da-Zhao, Li Dong-Zi. Invoice seal identification based on multi-feature fusion decision. Computer Engineering and Design, 2018, 39(09): 2842-2847
    [3] Chung W H, Wu M E, Ueng Y L, Su Y H. Seal imprint verification via feature analysis and classifications. Future Generation Computer Systems, 2019, 101: 458-466 doi: 10.1016/j.future.2019.04.027
    [4] Xie R N, Mao W H, Shi G Z. Electronic invoice authenticity verifying scheme based on signature recognition. In: Proceedings of International Conference on Advanced Algorithms and Control Engineering (ICAACE), 2019, 1−8
    [5] 季婧婧, 娄震. 基于二次分割的银行票据彩色印章的滤除. 现代电子技术, 2014, 37(22): 5-9 doi: 10.3969/j.issn.1004-373X.2014.22.002

    Ji Jing-Jing, Lou Zhen. Filtering of color seal on bank notes based on re⁃segmentation. Modern Electronics Technique, 2014, 37(22): 5-9 doi: 10.3969/j.issn.1004-373X.2014.22.002
    [6] 崔文成, 任磊, 刘阳, 邵虹. 基于数字结构特征的发票号码识别算法. 数据采集与处理, 2017, 32(1): 119-125

    Cui Wen-Cheng, Ren Lei, Liu Yang, Chao Hong. Invoice Number recognition algorithm based on numerical structure characteristics. Journal of Dat Acquisition and Processing, 2017, 32(1): 119-125
    [7] Goodfellow I J, Pouget-Abadie J, Mirza M, Xu B, WardeFarley D, Ozair S, et al. Generative adversarial nets. In: Proceedings of the 27th International Conference on Neural Information Processing Systems, 2014, 2672−2680
    [8] Rezende D J, Mohamed S, Wierstra D. Stochastic back-propagation and approximate inference in deep generative models. In: Proceedings of International Conference on Machine Learning (ICML), Beijing, China, JMLR:W&CP. 2014.
    [9] Hinton G E, Osindero S, Teh Y W. A fast learning algorithm for deep belief nets. Neural Computation, Beijing, China. JMLR:W&CP, 2006, 18(7): 1527-1554 doi: 10.1162/neco.2006.18.7.1527
    [10] 王坤峰, 苟超, 段艳杰, 林懿伦, 郑心湖, 王飞跃. 生成式对抗网络GAN的研究进展与展望. 自动化学报, 2017, 43(3): 321-332

    Wang Kun-Feng, Gou Chao, Duan Yan-Jie, Lin Yi-Lun, Zheng Xin-Hu, Wang Fei-Yue. Generative adversarial networks: the state of the art and beyond. Acta Automatica Sinica, 2017, 43(3): 321-33
    [11] 林懿伦, 戴星原, 李力, 王晓, 王飞跃. 人工智能研究的新前线: 生成式对抗网络. 自动化学报, 2018, 44(5): 775-792

    Lin Yi-Lun, Dai Xing-Yuan, Li Li, Wang Xiao, Wang Fei-Yue. The new frontier of AI research: generative adversarial networks. Acta Automatica Sinica, 2018, 44(5): 775-792
    [12] Radford A, Metz L, Chintala S. Unsupervised representation learning with deep convolutional generative adversarial networks. In: Proceedings of International Conference on Learning Representations (ICLR), 2015. San Diego, CA.
    [13] Ledig C, Theis L, Huszár F, Caballero J, Cunningham A, et al. Photo-realistic single image super-resolution using a generative adversarial network. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017, 105−114. Honolulu, HI, USA, Institute of Electrical and Electronics Engineers.
    [14] Denton E, Chintala S, Szlam A, Fergus R. Deep generative image models using a Laplacian pyramid of adversarial networks. In: Proceedings of the 28th International Conference on Neural Information Processing Systems, Montreal, QC, Canada, Neural information processing systems foundation, 2015, 1486−1494
    [15] Isola P, Zhu J Y, Zhou T, Efros A A. Image-to-image translation with conditional adversarial networks. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA , Institute of Electrical and Electronics Engineers. 2017, 5967−5976
    [16] Bao J M, Chen D, Wen F, Li H Q, Hua G. CVAE-GAN: Fine-grained image generation through asymmetric training. In: Proceedings of IEEE International Conference on Computer Vision (ICCV), Venice, Italy, Institute of Electrical and Electronics Engineers. 2017, 2764−2773
    [17] Zhu J Y, Park T, Isola P, Efros A A. Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of IEEE International Conference on Computer Vision (ICCV), Venice, Italy, Institute of Electrical and Electronics Engineers. 2017, 2242−2251
    [18] He K, Sun J. Convolutional neural networks at constrained time cost. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, Institute of Electrical and Electronics Engineers. 2015, 5353−5360
    [19] He K M, Zhang X Y, Ren S Q, Sun J. Deep residual learning for image recognition. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, Institute of Electrical and Electronics Engineers. 2016, 770−778
    [20] Ronneberger O, Fischer P, Brox T. U-Net: Convolutional networks for biomedical image segmentation. In: Proceedings of 18th International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI), Munich, Germany, Springer International Publishing Switzerland. 2015, 234−241
    [21] Arjovsky M, Chintala S, Bottou L. Wasserstein generative adversarial network. In: Proceedings of the International Conference on Machine Learning, Sydney, Australia. 2017, 298−321
    [22] Mao X D, Li Q, Xie H R, Lau, R Y K, Wang Z. Least squares generative adversarial networks. In: Proceedings of IEEE International Conference on Computer Vision (ICCV), Venice, Italy, Institute of Electrical and Electronics Engineers. 2017, 2813−282
    [23] Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, Erhan D, Vanhoucke V, Rabinovich A. Going deeper with convolutions. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, Institute of Electrical and Electronics Engineers. 2015, 1−9
    [24] Wang H, Wang Y T, Zhou Z, Ji X, Gong D H, Zhou J C, Li Z F, Liu W. CosFace: Large margin cosine loss for deep face recognition. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, USA, Institute of Electrical and Electronics Engineers.2018, 5265−5274
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  897
  • HTML全文浏览量:  1342
  • PDF下载量:  285
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-06-18
  • 录用日期:  2020-03-12
  • 网络出版日期:  2021-09-22
  • 刊出日期:  2021-11-18

目录

    /

    返回文章
    返回