2021年 第47卷 第11期
2021, 47(11): 2501-2520.
doi: 10.16383/j.aas.c200654
摘要:
作者识别是根据已知文本推断未知文本作者的交叉学科. 其传统研究通常基于文学或语言学的经验知识, 而现代研究则主要依靠数学方法量化作者的写作风格. 近些年, 随着认知科学、系统科学和信息技术的发展, 作者识别受到越来越多研究者的关注. 本文主要站在计算语言学的角度综述作者识别领域现代研究中的方法和思路. 首先, 简要介绍了作者识别的发展历程. 然后, 详述了文体风格特征、作者识别方法以及该领域中多层面的研究. 接着介绍了与作者识别相关的一些评测、数据集及评价指标. 最后, 指出该领域存在的一些问题, 结合这些问题分析并展望了作者识别的发展趋势.
作者识别是根据已知文本推断未知文本作者的交叉学科. 其传统研究通常基于文学或语言学的经验知识, 而现代研究则主要依靠数学方法量化作者的写作风格. 近些年, 随着认知科学、系统科学和信息技术的发展, 作者识别受到越来越多研究者的关注. 本文主要站在计算语言学的角度综述作者识别领域现代研究中的方法和思路. 首先, 简要介绍了作者识别的发展历程. 然后, 详述了文体风格特征、作者识别方法以及该领域中多层面的研究. 接着介绍了与作者识别相关的一些评测、数据集及评价指标. 最后, 指出该领域存在的一些问题, 结合这些问题分析并展望了作者识别的发展趋势.
2021, 47(11): 2521-2537.
doi: 10.16383/j.aas.c200551
摘要:
组合优化问题广泛存在于国防、交通、工业、生活等各个领域, 几十年来, 传统运筹优化方法是解决组合优化问题的主要手段, 但随着实际应用中问题规模的不断扩大、求解实时性的要求越来越高, 传统运筹优化算法面临着很大的计算压力, 很难实现组合优化问题的在线求解. 近年来随着深度学习技术的迅猛发展, 深度强化学习在围棋、机器人等领域的瞩目成果显示了其强大的学习能力与序贯决策能力. 鉴于此, 近年来涌现出了多个利用深度强化学习方法解决组合优化问题的新方法, 具有求解速度快、模型泛化能力强的优势, 为组合优化问题的求解提供了一种全新的思路. 因此本文总结回顾近些年利用深度强化学习方法解决组合优化问题的相关理论方法与应用研究, 对其基本原理、相关方法、应用研究进行总结和综述, 并指出未来该方向亟待解决的若干问题.
组合优化问题广泛存在于国防、交通、工业、生活等各个领域, 几十年来, 传统运筹优化方法是解决组合优化问题的主要手段, 但随着实际应用中问题规模的不断扩大、求解实时性的要求越来越高, 传统运筹优化算法面临着很大的计算压力, 很难实现组合优化问题的在线求解. 近年来随着深度学习技术的迅猛发展, 深度强化学习在围棋、机器人等领域的瞩目成果显示了其强大的学习能力与序贯决策能力. 鉴于此, 近年来涌现出了多个利用深度强化学习方法解决组合优化问题的新方法, 具有求解速度快、模型泛化能力强的优势, 为组合优化问题的求解提供了一种全新的思路. 因此本文总结回顾近些年利用深度强化学习方法解决组合优化问题的相关理论方法与应用研究, 对其基本原理、相关方法、应用研究进行总结和综述, 并指出未来该方向亟待解决的若干问题.
2021, 47(11): 2538-2546.
doi: 10.16383/j.aas.c210098
摘要:
城市污水处理过程优化控制是降低能耗的有效手段, 然而, 如何提高出水水质的同时降低能耗依然是当前城市污水处理过程面临的挑战. 围绕上述挑战, 文中提出了一种数据和知识驱动的多目标优化控制(Data-knowledge driven multiobjective optimal control, DK-MOC)方法. 首先, 建立了出水水质、能耗以及系统运行状态的表达关系, 获得了运行过程优化目标模型. 其次, 提出了一种基于知识迁徙学习的动态多目标粒子群优化算法, 实现了控制变量优化设定值的自适应求解. 最后, 将提出的DK-MOC应用于城市污水处理过程基准仿真模型1 (Benchmark simulation model No. 1, BSM1). 结果表明该方法能够实时获取控制变量的优化设定值, 提高了出水水质, 并且有效降低了运行能耗.
城市污水处理过程优化控制是降低能耗的有效手段, 然而, 如何提高出水水质的同时降低能耗依然是当前城市污水处理过程面临的挑战. 围绕上述挑战, 文中提出了一种数据和知识驱动的多目标优化控制(Data-knowledge driven multiobjective optimal control, DK-MOC)方法. 首先, 建立了出水水质、能耗以及系统运行状态的表达关系, 获得了运行过程优化目标模型. 其次, 提出了一种基于知识迁徙学习的动态多目标粒子群优化算法, 实现了控制变量优化设定值的自适应求解. 最后, 将提出的DK-MOC应用于城市污水处理过程基准仿真模型1 (Benchmark simulation model No. 1, BSM1). 结果表明该方法能够实时获取控制变量的优化设定值, 提高了出水水质, 并且有效降低了运行能耗.
2021, 47(11): 2547-2556.
doi: 10.16383/j.aas.c200629
摘要:
转发预测在社交媒体网站(Social media sites, SMS)中是一个很有挑战性的问题. 本文研究了SMS中的图像转发预测问题, 预测用户再次转发图像推特的图像共享行为. 与现有的研究不同, 本文首先提出异构图像转发建模网络(Image retweet modeling, IRM), 所利用的是用户之前转发图像推特中的相关内容、之后在SMS中的联系和被转发者的偏好三方面的内容. 在此基础上, 提出文本引导的多模态神经网络, 构建新型多方面注意力排序网络学习框架, 从而学习预测任务中的联合图像推特表征和用户偏好表征. 在Twitter的大规模数据集上进行的大量实验表明, 我们的方法较之现有的解决方案而言取得了更好的效果.
转发预测在社交媒体网站(Social media sites, SMS)中是一个很有挑战性的问题. 本文研究了SMS中的图像转发预测问题, 预测用户再次转发图像推特的图像共享行为. 与现有的研究不同, 本文首先提出异构图像转发建模网络(Image retweet modeling, IRM), 所利用的是用户之前转发图像推特中的相关内容、之后在SMS中的联系和被转发者的偏好三方面的内容. 在此基础上, 提出文本引导的多模态神经网络, 构建新型多方面注意力排序网络学习框架, 从而学习预测任务中的联合图像推特表征和用户偏好表征. 在Twitter的大规模数据集上进行的大量实验表明, 我们的方法较之现有的解决方案而言取得了更好的效果.
2021, 47(11): 2557-2569.
doi: 10.16383/j.aas.c201041
摘要:
飞机防滑刹车具有典型的强非线性、强耦合和参数时变等特点, 并且跑道环境的干扰容易对飞机的地面滑跑性能造成不利影响. 本文提出了一种基于非线性干扰观测器的飞机全电防滑刹车系统滑模控制设计方法. 首先, 考虑了实际刹车不确定性干扰条件下的防滑刹车动力学建模问题, 通过对高阶非线性刹车系统进行反馈线性化处理, 简化了基于严格反馈的模型. 其次, 基于对主轮打滑原因的深入分析, 设计了非线性干扰观测器对干扰进行在线估计, 并在控制律设计中引入补偿部分. 通过构造递归结构的快速终端滑模控制器来跟踪实时变化的最佳滑移率并建立稳定性条件, 实现了飞机全电防滑刹车系统的有限时间快速稳定并有效抑制了主轮锁定打滑. 通过在不同跑道状态下进行模拟仿真, 验证了本文提出的飞机防滑刹车控制策略可以有效地提高刹车效率.
飞机防滑刹车具有典型的强非线性、强耦合和参数时变等特点, 并且跑道环境的干扰容易对飞机的地面滑跑性能造成不利影响. 本文提出了一种基于非线性干扰观测器的飞机全电防滑刹车系统滑模控制设计方法. 首先, 考虑了实际刹车不确定性干扰条件下的防滑刹车动力学建模问题, 通过对高阶非线性刹车系统进行反馈线性化处理, 简化了基于严格反馈的模型. 其次, 基于对主轮打滑原因的深入分析, 设计了非线性干扰观测器对干扰进行在线估计, 并在控制律设计中引入补偿部分. 通过构造递归结构的快速终端滑模控制器来跟踪实时变化的最佳滑移率并建立稳定性条件, 实现了飞机全电防滑刹车系统的有限时间快速稳定并有效抑制了主轮锁定打滑. 通过在不同跑道状态下进行模拟仿真, 验证了本文提出的飞机防滑刹车控制策略可以有效地提高刹车效率.
2021, 47(11): 2570-2577.
doi: 10.16383/j.aas.c190313
摘要:
电熔镁熔炼过程中的异常工况(如半熔化工况)直接影响产品质量、威胁人员和生产安全, 有必要及时诊断. 但与异常直接相关的超高温熔池温度(>2850 ℃)难以利用温度传感器检测, 目前现场主要依靠工人在定期巡检时人眼观察炉壁来诊断, 工作强度大、安全度低、诊断不及时. 针对上述问题, 本文提出一种炉体动态图像驱动的电熔镁炉异常工况实时诊断方法. 结合电熔镁炉熔炼各区域温度分布的空间特征、正常工况下熔炼温度变化和水雾扰动引入的图像时序特征、以及异常工况下温度异常区域持续发亮扩大的特征, 在对炉体动态图像进行空间多级划分的基础上, 提出了一种多级动态主元分析(Multi-level dynamic principal component analysis, MLDPCA) 动态图像分块建模方法. 在此基础上, 提出基于MLDPCA的逐级诊断方法与基于贡献图的异常定位方法. 最后, 采用某电熔镁生产现场的实际图像进行方法验证, 结果表明了所提方法的有效性.
电熔镁熔炼过程中的异常工况(如半熔化工况)直接影响产品质量、威胁人员和生产安全, 有必要及时诊断. 但与异常直接相关的超高温熔池温度(>2850 ℃)难以利用温度传感器检测, 目前现场主要依靠工人在定期巡检时人眼观察炉壁来诊断, 工作强度大、安全度低、诊断不及时. 针对上述问题, 本文提出一种炉体动态图像驱动的电熔镁炉异常工况实时诊断方法. 结合电熔镁炉熔炼各区域温度分布的空间特征、正常工况下熔炼温度变化和水雾扰动引入的图像时序特征、以及异常工况下温度异常区域持续发亮扩大的特征, 在对炉体动态图像进行空间多级划分的基础上, 提出了一种多级动态主元分析(Multi-level dynamic principal component analysis, MLDPCA) 动态图像分块建模方法. 在此基础上, 提出基于MLDPCA的逐级诊断方法与基于贡献图的异常定位方法. 最后, 采用某电熔镁生产现场的实际图像进行方法验证, 结果表明了所提方法的有效性.
2021, 47(11): 2578-2584.
doi: 10.16383/j.aas.c180781
摘要:
在串行生产线中, 机器会发生故障而且故障间隔时间随机, 因此需要维修工人及时维修, 使得故障的机器恢复加工能力, 否则就可能导致系统吞吐率降低. 如何在满足系统吞吐率的前提下, 使用尽可能少的维修工人来完成机器的维修任务, 本文称这样一个全新的问题为串行生产线中机器维修工人的任务分配问题. 针对该问题, 本文首先建立了问题的优化模型, 并将该优化问题转换为多个判定问题进行求解; 然后, 通过合理地定义机器的维修工作量, 使得判定问题可以类比为并行机调度问题; 最后, 采用了一种基于最长处理时间优先算法(Longest processing time, LPT)和回溯策略的启发式算法, 搜索最优的维修工人任务分配方式. 实验结果表明, 该方法能有效求解维修工人的任务分配问题.
在串行生产线中, 机器会发生故障而且故障间隔时间随机, 因此需要维修工人及时维修, 使得故障的机器恢复加工能力, 否则就可能导致系统吞吐率降低. 如何在满足系统吞吐率的前提下, 使用尽可能少的维修工人来完成机器的维修任务, 本文称这样一个全新的问题为串行生产线中机器维修工人的任务分配问题. 针对该问题, 本文首先建立了问题的优化模型, 并将该优化问题转换为多个判定问题进行求解; 然后, 通过合理地定义机器的维修工作量, 使得判定问题可以类比为并行机调度问题; 最后, 采用了一种基于最长处理时间优先算法(Longest processing time, LPT)和回溯策略的启发式算法, 搜索最优的维修工人任务分配方式. 实验结果表明, 该方法能有效求解维修工人的任务分配问题.
2021, 47(11): 2585-2599.
doi: 10.16383/j.aas.c210697
摘要:
本文旨在提出一个智慧化时代的集智能化管理、智能化运营与智能化诊疗为一体的智慧医院解决方案, 即基于平行医学的平行医院. 平行医院以虚实互动的平行思想为核心理念, 以突出人以及其社会因素的信息物理社会系统(CPSS)作为基础设施, 以人工场景(Artificial scene), 计算实验(Computational experiments)和平行执行(Parallel execution)为一体的ACP平行智能理论为指导构建虚实交互的新一代智慧化医院管理系统. 本文对比指出了当前信息系统存在的缺陷, 提出了智慧医院操作系统的概念对医院的资源进行逻辑化统一管理, 重点介绍了对医院不同设备以及建筑等硬件设施的数字化、虚拟化及其交互联动, 参与人员数字化与虚拟化及其虚实交互的智能化系统构建. 在医院操作系统的应用层, 基于ACP理论的智慧医院操作系统通过虚实交互的智能化运行模式, 最终落实闭环、反馈、精准的收敛. 我们通过对天坛医院的平行医院实践案例 — 天坛智慧大脑进行案例分析, 印证了本文所提出的智慧医院操作系统的可行性与科学性.
本文旨在提出一个智慧化时代的集智能化管理、智能化运营与智能化诊疗为一体的智慧医院解决方案, 即基于平行医学的平行医院. 平行医院以虚实互动的平行思想为核心理念, 以突出人以及其社会因素的信息物理社会系统(CPSS)作为基础设施, 以人工场景(Artificial scene), 计算实验(Computational experiments)和平行执行(Parallel execution)为一体的ACP平行智能理论为指导构建虚实交互的新一代智慧化医院管理系统. 本文对比指出了当前信息系统存在的缺陷, 提出了智慧医院操作系统的概念对医院的资源进行逻辑化统一管理, 重点介绍了对医院不同设备以及建筑等硬件设施的数字化、虚拟化及其交互联动, 参与人员数字化与虚拟化及其虚实交互的智能化系统构建. 在医院操作系统的应用层, 基于ACP理论的智慧医院操作系统通过虚实交互的智能化运行模式, 最终落实闭环、反馈、精准的收敛. 我们通过对天坛医院的平行医院实践案例 — 天坛智慧大脑进行案例分析, 印证了本文所提出的智慧医院操作系统的可行性与科学性.
2021, 47(11): 2600-2613.
doi: 10.16383/j.aas.c180741
摘要:
铁水硅含量(化学热)和铁水温度(物理热)是高炉炼铁过程最重要的铁水质量指标, 其建模与控制对于整个高炉炼铁过程的运行优化意义重大. 针对高炉炼铁过程极复杂动态特性以及铁水质量难以进行常规机理建模与控制的难题, 基于直接数据驱动控制思想, 提出一种基于多参数灵敏度分析与大规模变异遗传参数优化的高炉铁水质量无模型自适应控制方法. 首先, 基于紧格式动态线性化(Compact form dynamic linearization, CFDL)无模型自适应控制(Model free adaptive control, MFAC)技术确定铁水质量的多变量数据驱动控制器结构; 然后, 针对CFDL-MFAC众多可调参数对控制器性能影响大, 同时对众多参数整体优化非常耗时且效果不理想的问题, 基于多参数灵敏度分析(Multi-parameter sensitivity analysis, MPSA)技术, 提出基于大规模变异与精英局部搜索遗传优化的CFDL-MFAC控制器参数整定方法; 最后, 将参数整定后的CFDL-MFAC控制器应用到高炉炼铁过程多元铁水质量控制, 并与基于递推子空间辨识的数据驱动预测控制进行比较研究, 验证所提控制方法的有效性和先进性.
铁水硅含量(化学热)和铁水温度(物理热)是高炉炼铁过程最重要的铁水质量指标, 其建模与控制对于整个高炉炼铁过程的运行优化意义重大. 针对高炉炼铁过程极复杂动态特性以及铁水质量难以进行常规机理建模与控制的难题, 基于直接数据驱动控制思想, 提出一种基于多参数灵敏度分析与大规模变异遗传参数优化的高炉铁水质量无模型自适应控制方法. 首先, 基于紧格式动态线性化(Compact form dynamic linearization, CFDL)无模型自适应控制(Model free adaptive control, MFAC)技术确定铁水质量的多变量数据驱动控制器结构; 然后, 针对CFDL-MFAC众多可调参数对控制器性能影响大, 同时对众多参数整体优化非常耗时且效果不理想的问题, 基于多参数灵敏度分析(Multi-parameter sensitivity analysis, MPSA)技术, 提出基于大规模变异与精英局部搜索遗传优化的CFDL-MFAC控制器参数整定方法; 最后, 将参数整定后的CFDL-MFAC控制器应用到高炉炼铁过程多元铁水质量控制, 并与基于递推子空间辨识的数据驱动预测控制进行比较研究, 验证所提控制方法的有效性和先进性.
2021, 47(11): 2614-2622.
doi: 10.16383/j.aas.c190459
摘要:
发票是财务系统的重要组成部分. 随着计算机视觉和人工智能技术的发展, 出现了各种发票自动识别系统, 但是发票上的印章严重影响了识别准确率. 本文提出了一种用于自动消除发票印章的SealGAN网络. SealGAN网络是基于生成式对抗网络CycleGAN的改进, 采用两个独立的分类器来取代原本的判别网络, 从而降低单个分类器的分类要求, 提高分类器的学习性能, 并且结合ResNet和Unet两种结构构建下采样−精炼−上采样的生成网络, 生成更加清晰的发票图像. 同时提出了基于风格评价和内容评价的综合评价指标对SealGAN网络进行性能评价. 实验结果表明, 与CycleGAN-ResNet和CycleGAN-Unet网络相比较, Seal GAN网络不仅能实现自动消除印章, 而且还能更加清晰地保留印章下的发票内容, 网络性能评价指标较高.
发票是财务系统的重要组成部分. 随着计算机视觉和人工智能技术的发展, 出现了各种发票自动识别系统, 但是发票上的印章严重影响了识别准确率. 本文提出了一种用于自动消除发票印章的SealGAN网络. SealGAN网络是基于生成式对抗网络CycleGAN的改进, 采用两个独立的分类器来取代原本的判别网络, 从而降低单个分类器的分类要求, 提高分类器的学习性能, 并且结合ResNet和Unet两种结构构建下采样−精炼−上采样的生成网络, 生成更加清晰的发票图像. 同时提出了基于风格评价和内容评价的综合评价指标对SealGAN网络进行性能评价. 实验结果表明, 与CycleGAN-ResNet和CycleGAN-Unet网络相比较, Seal GAN网络不仅能实现自动消除印章, 而且还能更加清晰地保留印章下的发票内容, 网络性能评价指标较高.
2021, 47(11): 2623-2636.
doi: 10.16383/j.aas.c190743
摘要:
多视角图像生成即基于某个视角图像生成其他多个视角图像, 是多视角展示和虚拟现实目标建模等领域的基本问题, 已引起研究人员的广泛关注. 近年来, 生成对抗网络(Generative adversarial network, GAN)在多视角图像生成任务上取得了不错的成绩, 但目前的主流方法局限于固定领域, 很难迁移至其他场景, 且生成的图像存在模糊、失真等弊病. 为此本文提出了一种基于混合对抗生成网络的多视角图像生成模型ViewGAN, 它包括多个生成器和一个多类别判别器, 可灵活迁移至多视角生成的多个场景. 在ViewGAN中, 多个生成器被同时训练, 旨在生成不同视角的图像. 此外, 本文提出了一种基于蒙特卡洛搜索的惩罚机制来促使每个生成器生成高质量的图像, 使得每个生成器更专注于指定视角图像的生成. 在DeepFashion, Dayton, ICG Lab6数据集上的大量实验证明: 我们的模型在Inception score和Top-k accuracy上的性能优于目前的主流模型, 并且在结构相似性(Structural similarity, SSIM)上的分数提升了32.29%, 峰值信噪比(Peak signal-to-noise ratio, PSNR)分数提升了14.32%, SD (Sharpness difference)分数提升了10.18%.
多视角图像生成即基于某个视角图像生成其他多个视角图像, 是多视角展示和虚拟现实目标建模等领域的基本问题, 已引起研究人员的广泛关注. 近年来, 生成对抗网络(Generative adversarial network, GAN)在多视角图像生成任务上取得了不错的成绩, 但目前的主流方法局限于固定领域, 很难迁移至其他场景, 且生成的图像存在模糊、失真等弊病. 为此本文提出了一种基于混合对抗生成网络的多视角图像生成模型ViewGAN, 它包括多个生成器和一个多类别判别器, 可灵活迁移至多视角生成的多个场景. 在ViewGAN中, 多个生成器被同时训练, 旨在生成不同视角的图像. 此外, 本文提出了一种基于蒙特卡洛搜索的惩罚机制来促使每个生成器生成高质量的图像, 使得每个生成器更专注于指定视角图像的生成. 在DeepFashion, Dayton, ICG Lab6数据集上的大量实验证明: 我们的模型在Inception score和Top-k accuracy上的性能优于目前的主流模型, 并且在结构相似性(Structural similarity, SSIM)上的分数提升了32.29%, 峰值信噪比(Peak signal-to-noise ratio, PSNR)分数提升了14.32%, SD (Sharpness difference)分数提升了10.18%.
2021, 47(11): 2637-2653.
doi: 10.16383/j.aas.c190654
摘要:
基于深度学习的非均匀运动图像去模糊方法已经获得了较好的效果. 然而, 现有的方法通常存在对边缘恢复不清晰的问题. 因此, 本文提出一种强边缘提取网络(Strong-edge extraction network, SEEN), 用于提取非均匀运动模糊图像的强边缘以提高图像边缘复原质量. 设计的强边缘提取网络由两个子网络SEEN-1和SEEN-2组成, SEEN-1实现双边滤波器的功能, 用于提取滤除了细节信息后的图像边缘. SEEN-2实现L0平滑滤波器的功能, 用于提取模糊图像的强边缘. 本文还将对应网络层提取的强边缘特征图与模糊特征图叠加, 进一步利用强边缘特征. 最后, 本文在GoPro数据集上进行了验证实验, 结果表明: 本文提出的网络可以较好地提取非均匀运动模糊图像的强边缘, 复原图像在客观和主观上都可以达到较好的效果.
基于深度学习的非均匀运动图像去模糊方法已经获得了较好的效果. 然而, 现有的方法通常存在对边缘恢复不清晰的问题. 因此, 本文提出一种强边缘提取网络(Strong-edge extraction network, SEEN), 用于提取非均匀运动模糊图像的强边缘以提高图像边缘复原质量. 设计的强边缘提取网络由两个子网络SEEN-1和SEEN-2组成, SEEN-1实现双边滤波器的功能, 用于提取滤除了细节信息后的图像边缘. SEEN-2实现L0平滑滤波器的功能, 用于提取模糊图像的强边缘. 本文还将对应网络层提取的强边缘特征图与模糊特征图叠加, 进一步利用强边缘特征. 最后, 本文在GoPro数据集上进行了验证实验, 结果表明: 本文提出的网络可以较好地提取非均匀运动模糊图像的强边缘, 复原图像在客观和主观上都可以达到较好的效果.
2021, 47(11): 2654-2663.
doi: 10.16383/j.aas.c180707
摘要:
脑功能网络是分析复杂网络之间连接关系的一种有效方法, 对脑功能障碍分析具有重要意义. 本文基于频域Granger因果分析的定向传递函数(Direction-transfer function, DTF), 构建了各频段的脑功能网络. 采用图论方法分析最佳阈值下经颅直流电刺激(Transcranial direct current stimulation, tDCS)干预前后孤独症(Autism spectrum disorder, ASD)儿童脑网络的平均度、全局效率和平均局部效率等特征, 并对比了经颅直流电刺激对孤独症儿童脑功能状态辅助干预效果. 结果发现刺激前组在各频段的图论特征均低于刺激后组(\begin{document}$P<0.05$\end{document} ), 其中Theta频段和低-beta频段的局部效率统计性差异显著, 表明在一定程度上tDCS干预是ASD儿童治疗的有效手段.
脑功能网络是分析复杂网络之间连接关系的一种有效方法, 对脑功能障碍分析具有重要意义. 本文基于频域Granger因果分析的定向传递函数(Direction-transfer function, DTF), 构建了各频段的脑功能网络. 采用图论方法分析最佳阈值下经颅直流电刺激(Transcranial direct current stimulation, tDCS)干预前后孤独症(Autism spectrum disorder, ASD)儿童脑网络的平均度、全局效率和平均局部效率等特征, 并对比了经颅直流电刺激对孤独症儿童脑功能状态辅助干预效果. 结果发现刺激前组在各频段的图论特征均低于刺激后组(
2021, 47(11): 2664-2674.
doi: 10.16383/j.aas.c190368
摘要:
作为工业网络的关键技术, 确定性调度通过合理安排网络传输资源, 满足工业数据在规定时间内到达目标设备的实时性要求. 工业网络往往部署在环境恶劣、电磁情况复杂的工业现场, 与有线网络相比, 工业无线网络还面临着严重的丢包问题. 考虑到重传是克服链路丢包的简便高效方法, 本文提出了支持持续重传和区间重传两种策略的确定性调度算法. 基于链路时槽松弛度和动态优先级, 调度算法在每个时槽按照调度规则为重传链路配置通信资源, 缓解丢包对数据传输的影响, 并围绕对应重传策略进行相应的时槽、频点优化分配, 保障数据端到端按时到达. 仿真结果表明, 所提调度算法在满足传输确定性的前提下, 有效提升了数据传输的可靠性.
作为工业网络的关键技术, 确定性调度通过合理安排网络传输资源, 满足工业数据在规定时间内到达目标设备的实时性要求. 工业网络往往部署在环境恶劣、电磁情况复杂的工业现场, 与有线网络相比, 工业无线网络还面临着严重的丢包问题. 考虑到重传是克服链路丢包的简便高效方法, 本文提出了支持持续重传和区间重传两种策略的确定性调度算法. 基于链路时槽松弛度和动态优先级, 调度算法在每个时槽按照调度规则为重传链路配置通信资源, 缓解丢包对数据传输的影响, 并围绕对应重传策略进行相应的时槽、频点优化分配, 保障数据端到端按时到达. 仿真结果表明, 所提调度算法在满足传输确定性的前提下, 有效提升了数据传输的可靠性.
2021, 47(11): 2675-2690.
doi: 10.16383/j.aas.c180722
摘要:
在高维多目标优化中, 不同的优化问题存在不同形状的Pareto前沿(PF), 而研究表明大多数多目标进化算法(Multi-objective evolutionary algorithms, MOEAs) 在处理不同的优化问题时普适性较差. 为了解决这个问题, 本文提出了一个基于R2指标和参考向量的高维多目标进化算法(An R2 indicator and reference vector based many-objective optimization evolutionary algorithm, R2-RVEA). R2-RVEA基于Pareto支配选取非支配解来指导种群进化, 仅当非支配解的数量超过种群规模时, 算法进一步采用种群分解策略和R2指标选择策略进行多样性管理. 通过大量的实验证明, 本文提出的算法在处理不同形状的PF时具有良好的性能.
在高维多目标优化中, 不同的优化问题存在不同形状的Pareto前沿(PF), 而研究表明大多数多目标进化算法(Multi-objective evolutionary algorithms, MOEAs) 在处理不同的优化问题时普适性较差. 为了解决这个问题, 本文提出了一个基于R2指标和参考向量的高维多目标进化算法(An R2 indicator and reference vector based many-objective optimization evolutionary algorithm, R2-RVEA). R2-RVEA基于Pareto支配选取非支配解来指导种群进化, 仅当非支配解的数量超过种群规模时, 算法进一步采用种群分解策略和R2指标选择策略进行多样性管理. 通过大量的实验证明, 本文提出的算法在处理不同形状的PF时具有良好的性能.
2021, 47(11): 2691-2714.
doi: 10.16383/j.aas.c190474
摘要:
针对噪声环境下求解多个极值点的问题, 本文提出了噪声环境下基于蒲丰距离的依概率多峰优化算法(Probabilistic multimodal optimization algorithm based on the Button distance, PMB). 算法依据蒲丰投针原理提出噪声下的蒲丰距离和极值分辨度概念, 理论推导证明了二者与算法峰值检测率符合依概率关系. 在全局范围内依据蒲丰距离划分搜索空间, 可以使PMB算法保持较好的搜索多样性. 在局部范围内利用改进的斐波那契法进行探索, 减少了算法陷入噪声引起的局部最优的概率. 基于34个测试函数, 从依概率特性验证、寻优结果影响因素分析、多极值点寻优和多维函数寻优四个角度进行实验. 证明了蒲丰距离与算法的峰值检测率符合所推导的依概率关系. 对比噪声环境下的改进蝙蝠算法和粒子群算法, PMB算法在噪声环境中可以依定概率更精确地定位多峰函数的更多极值点, 从而证明了PMB算法原理的正确性和噪声条件下全局寻优的依概率性能, 具有理论意义和实用价值.
针对噪声环境下求解多个极值点的问题, 本文提出了噪声环境下基于蒲丰距离的依概率多峰优化算法(Probabilistic multimodal optimization algorithm based on the Button distance, PMB). 算法依据蒲丰投针原理提出噪声下的蒲丰距离和极值分辨度概念, 理论推导证明了二者与算法峰值检测率符合依概率关系. 在全局范围内依据蒲丰距离划分搜索空间, 可以使PMB算法保持较好的搜索多样性. 在局部范围内利用改进的斐波那契法进行探索, 减少了算法陷入噪声引起的局部最优的概率. 基于34个测试函数, 从依概率特性验证、寻优结果影响因素分析、多极值点寻优和多维函数寻优四个角度进行实验. 证明了蒲丰距离与算法的峰值检测率符合所推导的依概率关系. 对比噪声环境下的改进蝙蝠算法和粒子群算法, PMB算法在噪声环境中可以依定概率更精确地定位多峰函数的更多极值点, 从而证明了PMB算法原理的正确性和噪声条件下全局寻优的依概率性能, 具有理论意义和实用价值.