2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于动态建模与重构的列车轴承故障检测和定位

刘强 方彤 董一凝 秦泗钊

刘强, 方彤, 董一凝, 秦泗钊. 基于动态建模与重构的列车轴承故障检测和定位. 自动化学报, 2019, 45(12): 2233−2241 doi: 10.16383/j.aas.c190247
引用本文: 刘强, 方彤, 董一凝, 秦泗钊. 基于动态建模与重构的列车轴承故障检测和定位. 自动化学报, 2019, 45(12): 2233−2241 doi: 10.16383/j.aas.c190247
Liu Qiang, Fang Tong, Dong Yi-Ning, Qin S. Joe. Dynamic modeling and reconstruction based fault detection and location of train bearings. Acta Automatica Sinica, 2019, 45(12): 2233−2241 doi: 10.16383/j.aas.c190247
Citation: Liu Qiang, Fang Tong, Dong Yi-Ning, Qin S. Joe. Dynamic modeling and reconstruction based fault detection and location of train bearings. Acta Automatica Sinica, 2019, 45(12): 2233−2241 doi: 10.16383/j.aas.c190247

基于动态建模与重构的列车轴承故障检测和定位

doi: 10.16383/j.aas.c190247
基金项目: 国家自然科学基金(61490704, 61991401, 61673097, 61573022), 中央高校基本科研业务费(N180802004, N160801001)资助
详细信息
    作者简介:

    刘强:东北大学教授. 主要研究方向为大数据建模、过程监控与故障诊断. 曾获辽宁省优秀博士学位论文奖, 中国自动化学会优秀博士学位论文提名奖. 本文通信作者. E-mail: liuq@mail.neu.edu.cn

    方彤:东北大学硕士研究生. 主要研究方向为统计过程监控与故障诊断. E-mail: 1770520@stu.neu.edu.cn

    董一凝:美国斯坦福大学博士后学者. 2011年毕业于清华大学电子工程系获学士学位. 2016年获美国南加州大学电子工程博士学位. 主要研究方向为过程数据分析, 潜变量模型, 统计过程监控和故障诊断. E-mail: yiningdo@stanford.edu

    秦泗钊:美国南加州大学教授. IEEE Fellow, IFAC Fellow, AIChE Fellow. 主要研究方向为统计过程监控, 故障诊断, 模型预测控制, 系统辨识, 建筑能源优化与控制性能监控. E-mail: sqin@usc.edu

Dynamic Modeling and Reconstruction Based Fault Detection and Location of Train Bearings

Funds: Supported by National Natural Science Foundation of China (61490704, 61991401, 61673097, 61573022) and Fundamental Research Funds for the Central Universities (N180802004, N160801001)
  • 摘要: 列车运行时轴承故障的检测与定位对于列车运行安全与健康维护至关重要. 现有的轴承故障报警系统主要是基于单一轴温变量的规则诊断, 报警不及时. 针对上述问题, 本文结合运行于相似环境和速度的同车多轴轴温的相关性及轴温动态性, 提出了一种数据驱动的基于多轴轴温动态潜结构的列车轴承故障检测与定位方法. 首先, 提出基于动态内在典型相关分析(Dynamic-inner canonical correlation analysis, DiCCA)的列车多轴轴温动态潜结构建模方法; 其次, 利用所建立的模型, 提出基于DiCCA综合指标的列车轴承故障检测方法; 在此基础上, 提出基于DiCCA多向重构的列车轴承故障定位方法. 利用某列车实际运行时的轴温数据进行验证, 结果表明了所提方法的有效性.
  • 图  1  列车轴温DiCCA模型中$ { v}_{k}$的自相关系数

    Fig.  1  Autocorrelation coefficient of $ { v}_{k}$ in the DiCCA model of train bearings

    图  2  列车轴承故障检测及定位流程

    Fig.  2  The process of fault detection and locating for train bearings

    图  3  DiCCA与列车系统诊断规则检测结果对比

    Fig.  3  Fault detection result comparison of DiCCA and the rule-based method of the train system

    图  4  案例1的故障检测结果

    Fig.  4  Fault detection result of Case 1

    图  8  案例5的故障检测结果

    Fig.  8  Fault detection result of Case 5

    图  9  案例3基于$ \varphi_s$的MRBC贡献图

    Fig.  9  $ \varphi_s$ based MRBC plot of Case 3

    图  10  案例3基于$ \varphi_v$的MRBC贡献图

    Fig.  10  $ \varphi_v$ based MRBC plot of Case 3

    图  11  案例4基于$\varphi_s$的MRBC贡献图

    Fig.  11  $\varphi_s$ based MRBC plot of Case 4

    图  12  案例4基于$\varphi_v$的MRBC贡献图

    Fig.  12  $\varphi_v$ based MRBC plot of Case 4

    图  5  案例2的故障检测结果

    Fig.  5  Fault detection result of Case 2

    图  6  案例3的故障检测结果

    Fig.  6  Fault detection result of Case 3

    图  7  案例4的故障检测结果

    Fig.  7  Fault detection result of Case 4

    表  1  基于规则的列车轴温预警及报警限

    Table  1  Rule-based warning and alarm limits oftrain bearings

    传感器位置预警限($^{\circ} {\rm C}$)报警限($^{\circ} {\rm C}$)
    轴箱100120
    齿轮箱110130
    电机定子160180
    电机传动端110130
    电机非传动端90110
    下载: 导出CSV

    表  2  各方法的轴承故障检测结果对比

    Table  2  Result comparison among faultdetection methods

    故障案例开始检测到异常的样本点
    规则方法PCADPCADiCCA
    电机定子9 0008 9828 2357 324
    电机非传动端35 93035 01035 00835 007
    齿轮箱19 34011 04211 03911 027
    轴箱7 4066 8216 8206 770
    电机传动端14 2008 3408 3218 292
    下载: 导出CSV
  • [1] 贾华强, 李利军. 提高我国高铁动车组装备制造水平和运行品质的思考. 中国铁路, 2014, (1): 30−33 doi: 10.3969/j.issn.1001-683X.2014.01.007

    1 Jia Hua-Qiang, Li Li-Jun. Thinking on improving the manufacturing level and operation quality of high speed train EMU in China. Chinese Railways, 2014, (1): 30−33 doi: 10.3969/j.issn.1001-683X.2014.01.007
    [2] 2 Borghesani P, Pennacchi P, Randall R B, Sawalhi N, Ricci R. Application of cepstrum pre-whitening for the diagnosis of bearing faults under variable speed conditions. Mechanical Systems and Signal Processing, 2013, 36(2): 370−384 doi: 10.1016/j.ymssp.2012.11.001
    [3] 3 Nikolaou N G, Antoniadis I A. Rolling element bearing fault diagnosis using wavelet packets. NDT & E International, 2002, 35(3): 197−205
    [4] 4 Elbouchikhi E, Choqueuse V, Amirat Y, Benbouzid M E H, Turri S. An efficient Hilbert-Huang transform-based bearing faults detection in induction machines. IEEE Transactions on Energy Conversion, 2017, 32(2): 401−413 doi: 10.1109/TEC.2017.2661541
    [5] 5 Rai V K, Mohanty A R. Bearing fault diagnosis using FFT of intrinsic mode functions in Hilbert-Huang transform. Mechanical Systems and Signal Processing, 2007, 21(6): 2607−2615
    [6] 6 Van M, Kang H, Shin K. Rolling element bearing fault diagnosis based on non-local means de-noising and empirical mode decomposition. IET Science, Measurement and Technology, 2014, 8(6): 571−578
    [7] 7 Lu S L, He Q B, Hu F, Kong F R. Sequential multiscale noise tuning stochastic resonance for train bearing fault diagnosis in an embedded system. IEEE Transactions on Instrumentation and Measurement, 2014, 63(1): 106−116 doi: 10.1109/TIM.2013.2275241
    [8] 8 Soualhi A, Medjaher K, Zerhouni N. K A. Bearing health monitoring based on Hilbert-Huang transform, support vector machine, and regression. IEEE Transactions on Instrumentation and Measurement, 2015, 64(1): 52−62 doi: 10.1109/TIM.2014.2330494
    [9] 9 Wang Z W, Zhang Q H, Xiong J B, Xiao M, Sun G X, He J. Fault diagnosis of a rolling bearing using wavelet packet denoising and random forests. IEEE Sensors Journal, 2017, 17(17): 5581−5588 doi: 10.1109/JSEN.2017.2726011
    [10] 10 Lou X S, Loparo K A. Bearing fault diagnosis based on wavelet transform and fuzzy inference. Mechanical Systems and Signal Processing, 2004, 18(5): 1077−1795 doi: 10.1016/S0888-3270(03)00077-3
    [11] 11 Henao H, Kia S, and Capolino G. Torsional vibration assessment and gear-fault diagnosis in railway traction system. IEEE Transactions on Industrial Electronics, 2011, 58(5): 1707−1717 doi: 10.1109/TIE.2011.2106094
    [12] 12 Qin S J. Survey on data-driven industrial process monitoring and diagnosis. Annual Reviews in Control, 2012, 36(2): 220−234 doi: 10.1016/j.arcontrol.2012.09.004
    [13] 13 Jia R X, W J, Zhou J L. Fault diagnosis of industrial process based on the optimal parametric t-distributed stochastic neighbor embedding. Science China Information Sciences, 2019. doi: 10.1007/s11432-018-9807-7
    [14] 陈晓露, 王瑞璇, 王晶, 周靖林. 基于混合型判别分析的工业过程监控及故障诊断. 自动化学报, 2019, DOI: 10.16383/j.aas.c180089

    Chen Xiao-Lu, Wang Rui-Xuan, Wang Jing, Zhou Jing-Lin. Industrial process monitoring and fault diagnosis based on hybrid discriminant analysis. Acta Automatica Sinica, 2019, DOI: 10.16383/j.aas.c180089
    [15] 贾宝柱, 贾志涛, 余培文. 数据驱动的船舶智能故障诊断方法. 控制工程, 2019, 26(10): 1892−1898

    15 Jia Bao-Zhu, Jia Zhi-Tao, Yu Pei-Wen. Data-driven vessel smart fault diagnosis method. Control Engineering of China, 2019, 26(10): 1892−1898
    [16] 16 Guo H Y, Cao D P, Chen H, Lv C, Wang H J, Yang S Q. Vehicle dynamic state estimation: state of the art schemes and perspectives. IEEE/CAA Journal of Automatica Sinica, 2018, 5(2): 418−431
    [17] 17 Dai C X, Liu Z G, Hu K T, Huang K. Fault diagnosis approach of traction transformers in high-speed railway combining kernel principal component analysis with random forest. IET Electrical Systems in Transportation, 2016, 6(3): 202−206 doi: 10.1049/iet-est.2015.0018
    [18] 18 Ji H Q, He X, Shang J, Zhou D H. Incipient fault detection with smoothing techniques in statistical process monitoring. Control Engineering Practice, 2017, 62: 11−21 doi: 10.1016/j.conengprac.2017.03.001
    [19] 19 Ku W, Storer R H, Georgakis C. Disturbance detection and isolation by dynamic principal component analysis. Chemometrics and Intelligent Laboratory Systems, 1995, 30(1): 179−196 doi: 10.1016/0169-7439(95)00076-3
    [20] 20 Dong Y N, Qin S J. Dynamic latent variable analytics for process operations and control. Computers and Chemical Engineering, 2018, 114: 69−80
    [21] 21 Dong Y N, Qin S J. Dynamic-Inner canonical correlation and causality analysis for high dimensional time series data. IFAC-PapersOnLine, 2018, 51(18): 476−481 doi: 10.1016/j.ifacol.2018.09.379
    [22] 22 Dong Y N, Qin S J. A novel dynamic PCA algorithm for dynamic data modeling and process monitoring. Journal of Process Control, 2018, 67: 1−11 doi: 10.1016/j.jprocont.2017.05.002
    [23] 23 Johan A W, Stephen P G, Age K S. Generalized contribution plots in multivariate statistical process monitoring. Chemometrics and Intelligent Laboratory Systems, 2000, 51(1): 95−114 doi: 10.1016/S0169-7439(00)00062-9
    [24] Li G, Qin S J, Chai T Y. Multi-directional reconstruction based contributions for root-cause diagnosis of dynamic processes. In: Proceedings of the 2014 American Control Conference, Portland, OR, USA: IEEE, 2014. 3500−3505
    [25] 周东华, 纪洪泉, 何潇. 高速列车信息控制系统的故障诊断技术. 自动化学报, 2018, 44(7): 1153−1164

    25 Zhou Dong-Hua, Ji Hong-Quan, He Xiao. Fault diagnosis technology for high speed train information control system. Acta Automatica Sinica, 2018, 44(7): 1153−1164
    [26] 26 Yue H H, Qin S J. Reconstruction-based fault identification using a combined index. Industrial and Engineering Chemistry Research, 2001, 40(20): 4403−4414 doi: 10.1021/ie000141+
    [27] 27 Box, G. Some theorems on quadratic forms applied in the study of analysis of variance problems, I. Effect of inequality of variance in the one-way classification. Ann. Math. Stat, 1954, 25: 290−302 doi: 10.1214/aoms/1177728786
  • 加载中
图(12) / 表(2)
计量
  • 文章访问数:  2714
  • HTML全文浏览量:  1008
  • PDF下载量:  341
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-03-25
  • 录用日期:  2019-07-17
  • 刊出日期:  2019-12-01

目录

    /

    返回文章
    返回