2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

考虑车辆跟驰作用和通信时延的网联车辆队列轨迹跟踪控制

李永福 邬昌强 朱浩 唐晓铭

李永福, 邬昌强, 朱浩, 唐晓铭. 考虑车辆跟驰作用和通信时延的网联车辆队列轨迹跟踪控制. 自动化学报, 2021, 47(9): 2264−2275 doi: 10.16383/j.aas.c190046
引用本文: 李永福, 邬昌强, 朱浩, 唐晓铭. 考虑车辆跟驰作用和通信时延的网联车辆队列轨迹跟踪控制. 自动化学报, 2021, 47(9): 2264−2275 doi: 10.16383/j.aas.c190046
Li Yong-Fu, Wu Chang-Qiang, Zhu Hao, Tang Xiao-Ming. Trajectory tracking control for connected vehicle platoon considering car-following interactions and time delays. Acta Automatica Sinica, 2021, 47(9): 2264−2275 doi: 10.16383/j.aas.c190046
Citation: Li Yong-Fu, Wu Chang-Qiang, Zhu Hao, Tang Xiao-Ming. Trajectory tracking control for connected vehicle platoon considering car-following interactions and time delays. Acta Automatica Sinica, 2021, 47(9): 2264−2275 doi: 10.16383/j.aas.c190046

考虑车辆跟驰作用和通信时延的网联车辆队列轨迹跟踪控制

doi: 10.16383/j.aas.c190046
基金项目: 国家自然科学基金(61773082), 重庆市自然科学重点研发项目基金(cstc2018jszxcyzdX0064), 重庆市重点基金(cstc2017jcyjBX0018), 国家重点研发计划(2016YFB0100906, 2018YFB1600502), 重庆邮电大学重点专项基金(A2018-02)资助
详细信息
    作者简介:

    李永福:博士, 重庆邮电大学自动化学院教授, 智能空地协同控制重庆市高校重点实验室主任. 主要研究方向为智能网联汽车和空地协同控制. 本文通信作者. E-mail: liyongfu@cqupt.edu.cn

    邬昌强:重庆邮电大学自动化学院硕士研究生. 主要研究方向为车辆轨迹跟踪控制. E-mail: wucq h1228@163.com

    朱浩:博士, 重庆邮电大学自动化学院副教授. 主要研究方向为智能车环境感知与信息融合. E-mail: zhuhao@cqupt.edu.cn

    唐晓铭:博士, 重庆邮电大学自动化学院副教授. 主要研究方向为网络化控制和模型预测控制. E-mail: tangxm@cqupt.edu.cn

Trajectory Tracking Control for Connected Vehicle Platoon Considering Car-Following Interactions and Time Delays

Funds: Supported by National Natural Science Foundation of China (61773082), Key Project of Chongqing (cstc2018jszxcyzdX0064), Key Natural Science Foundation of Chongqing (cstc2017jcyjBX0018), National Key Research and Development Program of China (2016YFB0100906, 2018YFB1600502), and Key Project of Chongqing University of Posts and Telecommunications (A2018-02)
More Information
    Author Bio:

    LI Yong-Fu Ph.D., professor at the College of Automation, Chongqing University of Posts and Telecommunications. His research interest covers connected and automated vehicles and air-ground cooperative control. Corresponding author of this paper

    WU Chang-Qiang Master student at the College of Automation, Chongqing University of Posts and Telecommunications. His research interest covers tracking control of vehicles

    ZHU Hao Ph.D., associate professor at the College of Automation, Chongqing University of Posts and Telecommunications. His research interest covers environmental perception of intelligent vehicles and information fusion

    TANG Xiao-Ming Ph.D., associate professor at the College of Automation, Chongqing University of Posts and Telecommunications. His research interest covers networked control and model predictive control

  • 摘要: 针对智能网联车辆轨迹跟踪问题, 本文通过考虑车辆跟驰作用和车车通信过程中存在的通信时延, 提出了一种分布式非线性轨迹跟踪控制器. 具体来讲, 首先, 提出一种双向领导跟随通信拓扑来描述智能网联环境下车辆间的通信连接. 其次, 考虑车辆跟驰作用和通信时延, 设计一种分布式非线性轨迹跟踪控制器. 然后, 使用Lyapunov方法证明了所设计控制器的稳定性. 最后, 考虑速度干扰作用于领导者车辆, 针对无时延、同质时延和异质时延等三种场景进行数值仿真实验. 仿真结果表明: 本文所设计的控制器不仅保证了车辆位置跟踪误差收敛到原点, 而且车辆运动规律符合交通流理论, 即无负位置跟踪误差和负速度现象.
  • 图  1  双向领导跟随通信拓扑示意图

    Fig.  1  Information flow of BDLF communication topology

    图  2  轨迹跟踪示意图

    Fig.  2  Trajectory tracking of follower vehicle i profile

    图  3  轨迹跟踪控制框架

    Fig.  3  Trajectory tracking control framework

    图  4  位置轨迹图

    Fig.  4  Position trajectory profile

    图  9  加速度图

    Fig.  9  Acceleration profile

    图  5  控制输入$ F(t) $

    Fig.  5  Control input $ F(t) $ profile

    图  6  位置跟踪误差图

    Fig.  6  Position error profile

    图  7  速度图

    Fig.  7  Velocity profile

    图  8  速度误差图

    Fig.  8  Velocity difference profile

    表  1  控制器参数

    Table  1  Controller parameters

    参数单位
    ${E}_1$7.5 (1,1)Tm/s
    ${E}_2$8.79 (1,1)Tm/s
    ${C}_1$0.14 (1,1)Tm−1
    ${C}_2$1.74 (1,1)T
    $l_c$5m
    $\kappa$0.45s−1
    $\beta$2.22s−1
    $J$0.047kg·m2
    $k_e$1.5
    $g_v$(1,0)T
    $k_z$8
    ${ k}_\phi$8${\bf I}$
    $d_\upsilon$4.5kg/s
    $d_\omega$0.41kg·m/s
    $\delta$(−0.05,0)T
    ${G_\omega }$1
    ${B}$(1,0;0,0.2)T
    m5.5kg
    下载: 导出CSV

    表  2  不同时延下的性能比较

    Table  2  Performance comparisons under different time delays

    性能无时延$\tau=0.02$ s$\tau=0.10$ s异质时延
    控制输入
    位置跟踪误差
    速度
    速度误差振幅 (m/s)000.20.3
    加速度振幅 (m/s2)2.22.32.62.8
    下载: 导出CSV
  • [1] Shieh W, Hsu C, Wang T. Vehicle positioning and trajectory tracking by infrared signal-direction discrimination for short-range vehicle-to-infrastructure communication systems. IEEE Transactions on Intelligent Transportation Systems, 2018, 19(2): 368-379. doi: 10.1109/TITS.2017.2697041
    [2] Li Y, Tang C, Srinivas P, Wang Y. Integral-sliding-mode braking control for connected vehicle platoon: theory and application. IEEE Transactions on Industrial Electronics. 2019, 66(6): 4618-4628. doi: 10.1109/TIE.2018.2864708
    [3] Li Y et al. Consensus-based cooperative control for multiplatoon under the connected vehicles environment. IEEE Transactions on Intelligent Transportation Systems, 2019, 20(6): 2220-2229. doi: 10.1109/TITS.2018.2865575
    [4] Li Y et al. Nonlinear consensus-based connected vehicle platoon control incorporating car-following interactions and heterogeneous time delays. IEEE Transactions on Intelligent Transportation Systems. 2019, 20(6): 2209-2219. doi: 10.1109/TITS.2018.2865546
    [5] Chatzikomis C et al. Comparison of path tracking and torque-vectoring controllers for autonomous electric vehicles. IEEE Transactions on Intelligent Vehicles, 2018,3(4): 559-570. doi: 10.1109/TIV.2018.2874529
    [6] Li Y, Wu C, Srinivas P, Wang Y. Trajectory tracking control for connected vehicle platoon. IFAC-PapersOnLine, 2018, 51(9): 92-97. doi: 10.1016/j.ifacol.2018.07.016
    [7] Li Y et al. Nonlinear finite-time consensus-based connected vehicle platoon control under fixed and switching communication topologies. Transportation Research Part C, 2018, 93: 525-543. doi: 10.1016/j.trc.2018.06.013
    [8] Li Y et al. Extended-state-observer-based double-loop integral sliding-mode control of electronic throttle valve. IEEE Transactions on Intelligent Transportations Systems, 2015, 16(5): 2501-2510. doi: 10.1109/TITS.2015.2410282
    [9] Li Y et al. Nonlane-discipline-based car-following model for electric vehicles in transportation-cyber-physical systems. IEEE Transactions on Intelligent Transportation Systems, 2018,19(1): 38-47. doi: 10.1109/TITS.2017.2691472
    [10] Invernizzi D, Lovera M. Trajectory tracking control of thrust-vectoring UAVs. Automatica, 2018, 95: 180-186. doi: 10.1016/j.automatica.2018.05.024
    [11] Cai H, Hu G. Distributed tracking control of an interconnected leader-follower multi-agent system. IEEE Transactions on Automatic Control, 2017,62(7): 3494-3501. doi: 10.1109/TAC.2017.2660298
    [12] Hong Y, Hu J, Gao L. Tracking control for multi-agent consensus with an active leader and variable topology.Automatica, 2018, 42(7): 1177-1182.
    [13] Kayacan E, Ramon H, Saeys W. Robust trajectory tracking error model-based predictive control for unmanned ground vehicles. IEEE/ASME Transactions on Mechatronics, 2016,21(2): 806-814. doi: 10.1109/TMECH.2015.2492984
    [14] Zhang Q, Lapierre L, Xiang X. Distributed control of cooperative path tracking for networked nonholonomic mobile vehicles.IEEE Transactions on Industrial Informatics, 2013,9(1): 472-484. doi: 10.1109/TII.2012.2219541
    [15] 徐杨, 陆丽萍, 褚端峰, 黄子超. 无人车辆轨迹规划与跟踪控制的统一建模方法. 自动化学报, 2019, 45(4): 799-801.

    Xu Yang, Lu Li-Ping, Chu Duan-Feng, Huang Zi-Chao. Unified modeling method of trajectory planning and tracking for unmanned vehicle.Acta Automatica Sinica, 2019, 45(4): 799-807.
    [16] Liang Z, Ren Z, Shao X. Decoupling trajectory tracking for gliding reentry vehicles. IEEE/CAA Journal of Automatica Sinica. 2015,2(1): 115-120. doi: 10.1109/JAS.2015.7032913
    [17] Aguiar A, Hespanha J. Trajectory-tracking and pathfollowing of underactuated autonomous vehicles with parametric modeling uncertainty. IEEE Transactions on Automatic Control, 2007, 52(8): 1362-1379. doi: 10.1109/TAC.2007.902731
    [18] Guo J, Luo Y, Li K. Adaptive non-linear trajectory tracking control for lane change of autonomous four-wheel independently drive electric vehicles. IET Intelligent Transport Systems, 2018, 12(7): 712-720. doi: 10.1049/iet-its.2017.0278
    [19] 沈智鹏, 张晓玲. 基于非线性增益递归滑模的船舶轨迹跟踪动态面自适应控制. 自动化学报, 2018, 44(10): 1833-1841.

    Shen Zhi-Peng, Zhang Xiao-Ling, Recursive sliding-mode dynamic surface adaptive control for ship trajectory tracking with nonlinear gains.Acta Automatica Sinica, 2018, 44(10): 1833-1841.
    [20] Yu X, Liu L. Target enclosing and trajectory tracking for a mobile robot with input disturbances. IEEE Control Systems Letters, 2017,1(2): 221-226. doi: 10.1109/LCSYS.2017.2712663
    [21] Wang J. Distributed coordinated tracking control for a class of uncertain multiagent systems. IEEE Transactions on Automatic Control, 2016,62(7): 3423-3429.
    [22] Peters A, Middleton H, Mason O. Leader tracking in homogeneous vehicle platoons with broadcast delays. Automatica, 2014, 50: 64-74. doi: 10.1016/j.automatica.2013.09.034
    [23] Kim J, Joe H, Yu S, Lee S, Kim M. Time-delay controller design for position control of autonomous underwater vehicle under disturbances. IEEE Transactions on Industrial Electronics. 2016, 63(2): 1052-1061. doi: 10.1109/TIE.2015.2477270
    [24] Zhang L, Sun J, Orosz G. Hierarchical design of connected cruise control in the presence of information delays and uncertain vehicle dynamics.IEEE Transactions on Control Systems Technology. 2018,26(1), 7435-7443.
    [25] Yan Z, Liu X, Zhou J, Wu D. Coordinated target tracking strategy for multiple unmanned underwater vehicles with time delays. IEEE Access, 2018, 6: 10348-10357. doi: 10.1109/ACCESS.2018.2793338
    [26] Song D et al. Multi-vehicle tracking with road maps and carfollowing models. IEEE Transactions on Intelligent Transportation Systems, 2018, 19(5), 1375-1386. doi: 10.1109/TITS.2017.2723575
    [27] Alasmary W, Zhuang W. The mobility impact in IEEE 802.11p infrastructureless vehicular networks.Ad Hoc Networks, 2012, 10(2), 222-230. doi: 10.1016/j.adhoc.2010.06.006
    [28] Ponnusamy S. Series: Convergence and divergence. Foundations of Mathematical Analysis. Birkhäuser, Boston, MA, USA, 2012.
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  1296
  • HTML全文浏览量:  236
  • PDF下载量:  329
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-01-08
  • 录用日期:  2019-07-10
  • 网络出版日期:  2021-10-13
  • 刊出日期:  2021-10-13

目录

    /

    返回文章
    返回