Spacecraft Attitude Coordination Control With Angular Velocity and Input Constraints
-
摘要:
提出了基于有向图的航天器姿态协同控制算法, 并且系统的角速度和控制输入满足有界性的约束. 当外部扰动存在时, 设计了自适应算法估计扰动的上界, 采用滤波器补偿的方法处理控制输入饱和问题, 并且设计了新的自适应姿态协同控制算法. 对于所设计的控制算法, 给出了稳定性分析, 证明了系统具有几乎全局渐近稳定性. 进一步把控制算法推广到时变通信时滞情况, 当控制器参数满足一定条件时, 仍然能够保证编队系统的几乎全局渐近稳定性. 通过数值仿真, 验证了所提出的控制方案的有效性.
Abstract:The spacecraft attitude coordination control algorithms with directed graph are proposed, and the resulting angular velocity and control input of the system satisfy the boundness constraint. When the external disturbances exist, the adaptive algorithms are designed to estimate the upper bound of the disturbances. The compensation method using the fllters is adopted to deal with the input saturation problem, and the novel adaptive attitude coordination control algorithms are developed. The almost global asymptotical stability of the system with the proposed control algorithms is proven by the use of stability analysis. The control algorithms are further extended to the case of the time-varying communication delays. The almost global asymptotic stability of the system is also guaranteed when the parameters of the controllers satisfy some conditions. The efiectiveness of the control schemes is verifled by numerical simulations.
-
Key words:
- Angular velocity constrain /
- input saturation /
- attitude coordination /
- communication delay /
- asymptotical stability
1) 本文责任编委 倪茂林 -
[1] Scharf D P, Hadaegh F Y, Ploen S R. A survey of spacecraft formation flying guidance and control (Part Ⅱ): Control. In: Proceedings of the 2004 American Control Conference. Boston, USA: IEEE, 2004. 2976-2985 [2] VanDyke M C, Hall C D. Decentralized coordinated attitude control within a formation of spacecraft. Journal of Guidance, Control, and Dynamics, 2006, 29(5): 1101-1109 doi: 10.2514/1.17857 [3] Ren W. Distributed attitude alignment in spacecraft formation flying. International Journal of Adaptive Control and Signal Processing, 2007, 21(2-3): 95-113 doi: 10.1002/acs.916 [4] Bai H, Arcak M, Wen J T. Rigid body attitude coordination without inertial frame information. Automatica, 2008, 44(12): 3170-3175 doi: 10.1016/j.automatica.2008.05.018 [5] Dimarogonas D V, Tsiotras P, Kyriakopoulos K J. Leader-follower cooperative attitude control of multiple rigid bodies. Systems & Control Letters, 2009, 58(6): 429-435 http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4586591 [6] 胡庆雷, 周稼康, 马广富. 无需角速度的含通信时延卫星编队飞行自适应姿态协同跟踪控制. 自动化学报, 2012, 38(3): 462-468 doi: 10.3724/SP.J.1004.2012.00462Hu Qing-Lei, Zhou Jia-Kang, Ma Guang-Fu. Angle velocity free attitude synchronization adaptive tracking control for satellite formation flying with time-varying delays. Acta Automatica Sinica , 2012, 38(3): 462-468 doi: 10.3724/SP.J.1004.2012.00462 [7] 田静, 程月华, 姜斌, 成婧, 陈志明. 有限通信情况下的航天器编队协同控制研究. 航天控制, 2014, 32(4): 75-81 doi: 10.3969/j.issn.1006-3242.2014.04.013Tian Jing, Cheng Yue-Hua, Jiang Bin, Cheng Jing, Chen Zhi-Ming. Research on cooperative control of spacecraft formation under limited information-exchange. Aerospace Control, 2014, 32(4): 75-81 doi: 10.3969/j.issn.1006-3242.2014.04.013 [8] 王文佳, 李传江, 孙延超, 马广富. 考虑状态约束的航天器编队分布式姿态协同跟踪控制. 控制与决策, 2018, 33(9): 1584-1590 https://www.cnki.com.cn/Article/CJFDTOTAL-KZYC201809006.htmWang Wen-Jia, Li Chuan-Jiang, Sun Yan-Chao, Ma Guang-Fu. Distributed attitude coordinated tracking control for spacecraft formation with state constraints. Control and Decision, 2018, 33(9): 1584-1590 https://www.cnki.com.cn/Article/CJFDTOTAL-KZYC201809006.htm [9] 马鸣宇, 董朝阳, 马思迁, 王青. 多航天器反步滑模SO(3)协同控制. 宇航学报, 2018, 39(6): 664-673 https://www.cnki.com.cn/Article/CJFDTOTAL-YHXB201806010.htmMa Ming-Yu, Dong Chao-Yang, Ma Si-Qian, Wang Qing. Coordinated attitude control of multiple spacecraft via backstepping sliding mode method on SO(3). Journal of Astronautics, 2018, 39(6): 664-673 https://www.cnki.com.cn/Article/CJFDTOTAL-YHXB201806010.htm [10] Du H, Li S. Attitude synchronization for flexible spacecraft with communication delays. IEEE Transactions on Automatic Control, 2016, 61(11) : 3625-3630 doi: 10.1109/TAC.2016.2525933 [11] Song W, Markdahl J, Zhang S, Hu X, Hong Y. Intrinsic reduced attitude formation with ring inter-agent graph. Automatica, 2017, 85: 193-201 doi: 10.1016/j.automatica.2017.07.015 [12] Zhang C, Wang J, Zhang D, Shao X. Fault-tolerant adaptive finite-time attitude synchronization and tracking control for multi-spacecraft formation. Aerospace Science and Technology, 2018, 73: 197-209 doi: 10.1016/j.ast.2017.12.004 [13] Bhat S P, Bernstein D S. A topological obstruction to continuous global stabilization of rotational motion and the unwinding phenomenon. Systems & Control Letters, 2000, 39(1): 63-70 http://www.sciencedirect.com/science/article/pii/S0167691199000900 [14] 宿敬亚, 张瑞峰, 蔡开元. 基于MRP的全局稳定的PID刚体姿态控制. 航空学报, 2011, 32(4): 710-719 https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201104016.htmSu Jing-Ya, Zhang Rui-Feng, Cai Kai-Yuan. Globally stabilizing PID attitude control of rigid body based on MRP. Acta Astronautica Astronautica Sinica, 2011, 32(4): 710-719 https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201104016.htm [15] Mayhew C G, Sanfelice R G, Sheng J, Arcak M, Teel A R. Quaternion-based hybrid feedback for robust global attitude synchronization. IEEE Transactions on Automatic Control, 2012, 57(8): 2122-2127 doi: 10.1109/TAC.2011.2180777 [16] Sarlette A, Sepulchre R, Lenoard N E. Autonomous rigid body attitude synchronization. Automatica, 2009, 45(2): 572-577 doi: 10.1016/j.automatica.2008.09.020 [17] Igarashi Y, Hatanaka T, Fujita M, Spong M W. Passivity-based attitude synchronization in SE(3). IEEE Transactions on Control Systems Technology, 2009, 17(5): 1119-1134 doi: 10.1109/TCST.2009.2014357 [18] Thunberg J, Song W, Montijano E. Distributed attitude synchronization control of multi-agent systems with switching topologies. Automatica, 2014, 50(3): 832-840 doi: 10.1016/j.automatica.2014.02.002 [19] Wang H L, Xie Y C. On Attitude synchronization of multiple rigid bodies with time delays. In: Proceedings of the 18th IFAC World Congress. Milano, Italy: IEEE, 2011. 8774-8778 [20] Zheng Z, Xu Y, Zhang L, Song S. Decentralized attitude synchronization tracking control for multiple spacecraft under directed communication topology. Chinese Journal of Aeronautics, 2016, 29(4): 995-1006 doi: 10.1016/j.cja.2016.06.013 [21] Wie B, Lu J. Feedback control logic for spacecraft eigenaxis rotations under slew rate and control constraints. Journal of Guidance, Control, and Dynamics, 1995, 18(6): 1372-1379 doi: 10.2514/3.21555 [22] Hu Q, Li B, Zhang Y. Robust attitude control design for spacecraft under assigned velocity and control constraints. ISA Transactions, 2013, 52(4): 480-493 doi: 10.1016/j.isatra.2013.03.003 [23] Hu Q, Li L, Friswell M I. Spacecraft anti-unwinding attitude control with actuator nonlinearities and velocity limit. Journal of Guidance, Control, and Dynamics, 2015, 38(10): 2042-2050 doi: 10.2514/1.G000980 [24] Hu Q, Tan X. Unified attitude control for spacecraft under velocity and control constraints. Aerospace Science and Technology, 2017, 67: 257-264 doi: 10.1016/j.ast.2017.04.009 [25] Shen Q, Yue C, Goh C H, Wu B, Wang D. Rigid-body attitude stabilization with attitude and angular rate constraints. Automatica, 2018, 90(10): 157-163 http://www.sciencedirect.com/science/article/pii/S0005109817306167 [26] Yu C, Xie X. Dynamic sliding mode-based attitude stabilisation control of satellites with angular velocity and control constraints. Transactions of the Institute of Measurement and Control, 2018, 41(4): 934-941 [27] Ren W, Beard R W. Distributed Consensus in Multi-vehicle Cooperative control: Theory and Applications. London: Springer-Verlag, 2017. 281-283 [28] Slotine J E, Li W. Applied Nonlinear Control. New York: Prentice Hall, 1991. 223-224 [29] Mahony R, Hamel T, Pflimlin J M. Nonlinear complementary filters on the special orthogonal group. IEEE Transactions on Automatic Control, 2008, 53(5): 1203-1218 doi: 10.1109/TAC.2008.923738