2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于R2指标和参考向量的高维多目标进化算法

陈国玉 李军华 黎明 陈昊

陈国玉, 李军华, 黎明, 陈昊. 基于R2指标和参考向量的高维多目标进化算法. 自动化学报, 2021, 47(11): 2675-2690 doi: 10.16383/j.aas.c180722
引用本文: 陈国玉, 李军华, 黎明, 陈昊. 基于R2指标和参考向量的高维多目标进化算法. 自动化学报, 2021, 47(11): 2675-2690 doi: 10.16383/j.aas.c180722
Chen Guo-Yu, Li Jun-Hua, Li Ming, Chen Hao. An R2 indicator and reference vector based many-objective optimization evolutionary algorithm. Acta Automatica Sinica, 2021, 47(11): 2675-2690 doi: 10.16383/j.aas.c180722
Citation: Chen Guo-Yu, Li Jun-Hua, Li Ming, Chen Hao. An R2 indicator and reference vector based many-objective optimization evolutionary algorithm. Acta Automatica Sinica, 2021, 47(11): 2675-2690 doi: 10.16383/j.aas.c180722

基于R2指标和参考向量的高维多目标进化算法

doi: 10.16383/j.aas.c180722
基金项目: 

国家自然科学基金 61440049

国家自然科学基金 61866025

国家自然科学基金 61866026

国家自然科学基金 62066031

江西省自然科学基金 20181BAB202025

江西省优势科技创新团队计划 20181BCB24008

详细信息
    作者简介:

    陈国玉 南昌航空大学硕士研究生.主要研究方向为进化计算. E-mail: 1704081002001@stu.nchu.edu.cn

    黎明 南昌航空大学教授. 主要研究方向为图像处理和人工智能. E-mail: liming@nchu.edu.cn

    陈昊 南昌航空大学副教授. 主要研究方向为动态和高维多目标进化算法. E-mail: chenhaoshl@nchu.edu.cn

    通讯作者:

    李军华 南昌航空大学教授. 主要研究方向为进化计算和智能控制. 本文通信作者. E-mail: jhlee126@126.com

An R2 Indicator and Reference Vector Based Many-objective Optimization Evolutionary Algorithm

Funds: 

National Natural Science Foundation of China 61440049

National Natural Science Foundation of China 61866025

National Natural Science Foundation of China 61866026

National Natural Science Foundation of China 62066031

Natural Science Foundation of Jiangxi 20181BAB202025

Superiority Science and Technology Innovation Team Program of Jiangxi 20181BCB24008

More Information
    Author Bio:

    CHEN Guo-Yu Master student at Nanchang Hangkong University. His main research interest is evolutionary computation

    LI Ming Professor at Nanchang Hangkong University. His research interest covers image processing and artiflcial intelligence

    CHEN Hao Associate professor at Nanchang Hangkong University. His research interest covers dynamic and many-objective evolutionary algorithms

    Corresponding author: LI Jun-Hua Professor at Nanchang Hangkong University. His research interest covers evolutionary computation and intelligent control. Corresponding author of this paper
  • 摘要: 在高维多目标优化中, 不同的优化问题存在不同形状的Pareto前沿(PF), 而研究表明大多数多目标进化算法(Multi-objective evolutionary algorithms, MOEAs) 在处理不同的优化问题时普适性较差. 为了解决这个问题, 本文提出了一个基于R2指标和参考向量的高维多目标进化算法(An R2 indicator and reference vector based many-objective optimization evolutionary algorithm, R2-RVEA). R2-RVEA基于Pareto支配选取非支配解来指导种群进化, 仅当非支配解的数量超过种群规模时, 算法进一步采用种群分解策略和R2指标选择策略进行多样性管理. 通过大量的实验证明, 本文提出的算法在处理不同形状的PF时具有良好的性能.
    Recommended by Associate Editor WANG Ding
    1)  本文责任编委 王鼎
  • 图  1  目标问题上展示的15个参考向量

    Fig.  1  15 reference vectors are shown on 3-objective problem

    图  2  DTLZ4问题15目标上获得的非支配解

    Fig.  2  Nondominated solutions obtained on 15-objective DTLZ4

    图  3  DTLZ5问题3目标上获得的非支配解

    Fig.  3  Nondominated solutions obtained on 3-objective DTLZ5

    图  4  DTLZ7问题5目标上获得的非支配解

    Fig.  4  Nondominated solutions obtained on 5-objective DTLZ7

    图  5  R2-RVEA在3维DTLZ7上获得的不同结果

    Fig.  5  Different results obtained by R2-RVEA on 3-objective DTLZ7

    图  6  R2-RVEA在3维DTLZ7上GD和DM指标的进化轨迹

    Fig.  6  Evolutionary trajectories of GD and DM for R2-RVEA on 3-objective DTLZ7

    表  1  种群规模设置

    Table  1  Setting of population size

    $M$ $(p_1, p_2)$ 种群规模
    3 (12, 0) 105
    5 (6, 0) 126
    10 (3, 2) 275
    15 (2, 1) 135
    下载: 导出CSV

    表  2  R2-RVEA、NSGA-Ⅲ、RVEA、MOEA/DD、MOMBI-Ⅱ、KnEA和TS-R2EA在DTLZ1$-$DTLZ7上获得的HV值的统计结果(均值和标准差). 最好的结果已突出

    Table  2  The statistical results (mean and standard deviation) of the HV values obtained by R2-RVEA, NSGA-Ⅲ, RVEA, MOEA/DD, MOMBI-Ⅱ, KnEA and TS-R2EA on DTLZ1 to DTLZ7. The best results are highlighted

    问题 $M$ R2-RVEA NSGA-Ⅲ RVEA MOEA/DD MOMBI-Ⅱ KnEA TS-R2EA
    DTLZ 1 3 $8.3819\times 10^{-1}$
    $(1.31\times 10^{-2})$
    $8.4373\times 10^{-1}$
    $(1.16\times 10^{-3}) +$
    $8.4431\times 10^{-1}$
    $(1.41\times 10^{-4}) +$
    $8.4426\times 10^{-1}$
    $(2.26\times 10^{-4}) +$
    $8.4357\times 10^{-1}$
    $(9.08\times 10^{-4}) \approx$
    $7.8436\times 10^{-1}$
    $(4.64\times 10^{-2}) -$
    $8.4419\times 10^{-1}$
    $(3.44\times 10^{-4}) +$
    5 $9.6015\times 10^{-1}$
    $(4.69\times 10^{-2})$
    $9.2764\times 10^{-1}$
    $(1.43\times 10^{-1}) -$
    $9.7488\times 10^{-1}$
    $(2.27\times 10^{-4}) +$
    $9.7484\times 10^{-1}$
    $(2.75\times 10^{-4}) +$
    $9.3835\times 10^{-1}$
    $(1.26\times 10^{-1}) -$
    $7.6616\times 10^{-1}$
    $(9.09\times 10^{-2}) -$
    $9.7486\times 10^{-1}$
    $(2.27\times 10^{-4}) +$
    10 $9.9892\times 10^{-1}$
    $(5.94\times 10^{-4})$
    $9.9520\times 10^{-1}$
    $(2.43\times 10^{-2}) -$
    $9.9968\times 10^{-1}$
    $(1.88\times 10^{-5}) +$
    $9.9518\times 10^{-1}$
    $(2.46\times 10^{-2}) -$
    $9.4328\times 10^{-1}$
    $(4.34\times 10^{-2}) -$
    $4.0984\times 10^{-1}$
    $(1.92\times 10^{-1}) -$
    $9.9970\times 10^{-1}$
    $(2.11\times 10^{-5}) +$
    15 $8.7065\times 10^{-1}$
    $(2.75\times 10^{-1})$
    $4.8134\times 10^{-1}$
    $(4.84\times 10^{-1}) -$
    $9.4387\times 10^{-1}$
    $(1.71\times 10^{-1}) +$
    $9.5591\times 10^{-1}$
    $(1.36\times 10^{-1}) +$
    $7.4281\times 10^{-1}$
    $(1.91\times 10^{-1}) -$
    $6.4831\times 10^{-2}$
    $(1.30\times 10^{-1}) -$
    $6.1864\times 10^{-1}$
    $(3.77\times 10^{-1}) -$
    DTLZ 2 3 $5.6302\times 10^{-1}$
    $(5.99\times 10^{-6})$
    $5.6303\times 10^{-1}$
    $(7.97\times 10^{-7}) \approx$
    $5.6302\times 10^{-1}$
    $(6.53\times 10^{-7}) \approx$
    $5.6302\times 10^{-1}$
    $(3.98\times 10^{-7}) \approx$
    $5.6299\times 10^{-1}$
    $(2.19\times 10^{-5}) -$
    $5.2089\times 10^{-1}$
    $(1.20\times 10^{-2}) -$
    $5.6302\times 10^{-1}$
    $(2.36\times 10^{-6}) -$
    5 $7.9493\times 10^{-1}$
    $(4.55\times 10^{-4})$
    $7.9498\times 10^{-1}$
    $(3.66\times 10^{-4}) \approx$
    $7.9492\times 10^{-1}$
    $(3.75\times 10^{-4}) \approx$
    $7.9484\times 10^{-1}$
    $(3.71\times 10^{-4}) \approx$
    $7.9470\times 10^{-1}$
    $(4.13\times 10^{-4}) -$
    $7.4725\times 10^{-1}$
    $(1.23\times 10^{-2}) -$
    $7.9479\times 10^{-1}$
    $(3.90\times 10^{-4}) \approx$
    10 $9.6978\times 10^{-1}$
    $(1.74\times 10^{-4})$
    $9.4911\times 10^{-1}$
    $(3.63\times 10^{-2}) \approx$
    $9.6983\times 10^{-1}$
    $(1.64\times 10^{-4}) \approx$
    $9.6978\times 10^{-1}$
    $(1.72\times 10^{-4}) \approx$
    $9.7090\times 10^{-1}$
    $(1.49\times 10^{-3}) +$
    $9.2287\times 10^{-1}$
    $(8.30\times 10^{-3}) -$
    $9.7057\times 10^{-1}$
    $(1.66\times 10^{-4}) +$
    15 $9.9057\times 10^{-1}$
    $(4.02\times 10^{-4})$
    $9.6345\times 10^{-1}$
    $(1.75\times 10^{-2}) -$
    $9.7793\times 10^{-1}$
    $(4.01\times 10^{-2}) -$
    $9.9063\times 10^{-1}$
    $(2.44\times 10^{-4}) \approx$
    $8.1493\times 10^{-1}$
    $(9.09\times 10^{-2}) -$
    $9.6726\times 10^{-1}$
    $(9.69\times 10^{-3}) -$
    $9.8690\times 10^{-1}$
    $(2.06\times 10^{-3}) \approx$
    DTLZ 3 3 $3.1493\times 10^{-1}$
    $(2.64\times 10^{-1})$
    $3.3928\times 10^{-1}$
    $(2.64\times 10^{-1}) \approx$
    $4.4454\times 10^{-1}$
    $(2.26\times 10^{-1}) +$
    $3.8776\times 10^{-1}$
    $(2.55\times 10^{-1}) +$
    $4.5790\times 10^{-1}$
    $(2.08\times 10^{-1}) +$
    $3.8655\times 10^{-1}$
    $(1.84\times 10^{-1}) \approx$
    $4.6543\times 10^{-1}$
    $(2.12\times 10^{-1}) \approx$
    5 $3.7400\times 10^{-1}$
    $(3.68\times 10^{-1})$
    $1.5350\times 10^{-1}$
    $(2.96\times 10^{-1}) -$
    $2.8806\times 10^{-1}$
    $(3.85\times 10^{-1}) -$
    $4.5110\times 10^{-1}$
    $(3.88\times 10^{-1}) \approx$
    $3.9824\times 10^{-1}$
    $(3.80\times 10^{-1}) \approx$
    $3.5245\times 10^{-1}$
    $(3.42\times 10^{-1}) \approx$
    $7.9253\times 10^{-1}$
    $(2.14\times 10^{-3}) +$
    10 $5.7253\times 10^{-1}$
    $(2.29\times 10^{-1})$
    $1.2957\times 10^{-1}$
    $(3.35\times 10^{-1}) -$
    $8.7219\times 10^{-1}$
    $(2.96\times 10^{-1}) +$
    $7.7563\times 10^{-1}$
    $(3.94\times 10^{-1}) +$
    $7.9552\times 10^{-1}$
    $(2.33\times 10^{-1}) +$
    $9.4859\times 10^{-2}$
    $(1.25\times 10^{-1}) -$
    $8.0885\times 10^{-1}$
    $(3.68\times 10^{-1}) +$
    15 $1.8380\times 10^{-1}$
    $(3.12\times 10^{-1})$
    $0.0000\times 10^{0}$
    $(0.00\times 10^{0}) -$
    $1.5858\times 10^{-1}$
    $(3.61\times 10^{-1}) \approx$
    $6.5490\times 10^{-2}$
    $(2.49\times 10^{-1}) -$
    $1.2904\times 10^{-1}$
    $(1.89\times 10^{-1}) \approx$
    $0.0000\times 10^{0}$
    $(0.00\times 10^{0}) -$
    $1.2832\times 10^{-1}$
    $(3.33\times 10^{-1}) \approx$
    DTLZ 4 3 $5.5571\times 10^{-1}$
    $(4.00\times 10^{-2})$
    $4.9607\times 10^{-1}$
    $(1.04\times 10^{-1}) -$
    $5.6302\times 10^{-1}$
    $(1.76\times 10^{-6}) \approx$
    $5.6302\times 10^{-1}$
    $(9.77\times 10^{-7}) \approx$
    $5.4835\times 10^{-1}$
    $(5.57\times 10^{-2}) -$
    $5.2680\times 10^{-1}$
    $(8.24\times 10^{-2}) -$
    $5.6302\times 10^{-1}$
    $(3.79\times 10^{-6}) \approx$
    5 $7.9489\times 10^{-1}$
    $(3.32\times 10^{-4})$
    $7.8461\times 10^{-1}$
    $(3.14\times 10^{-2}) \approx$
    $7.9488\times 10^{-1}$
    $(4.10\times 10^{-4}) \approx$
    $7.9488\times 10^{-1}$
    $(3.94\times 10^{-4}) \approx$
    $7.5533\times 10^{-1}$
    $(4.54\times 10^{-2}) -$
    $7.7479\times 10^{-1}$
    $(4.58\times 10^{-3}) -$
    $7.9462\times 10^{-1}$
    $(3.32\times 10^{-4}) -$
    10 $9.6980\times 10^{-1}$
    $(1.43\times 10^{-4})$
    $9.5960\times 10^{-1}$
    $(2.48\times 10^{-2}) \approx$
    $9.6983\times 10^{-1}$
    $(1.87\times 10^{-4}) \approx$
    $9.6977\times 10^{-1}$
    $(1.78\times 10^{-4}) \approx$
    $9.7012\times 10^{-1}$
    $(4.66\times 10^{-3}) +$
    $9.5269\times 10^{-1}$
    $(2.39\times 10^{-3}) -$
    $9.7122\times 10^{-1}$
    $(1.77\times 10^{-4}) +$
    15 $9.9066\times 10^{-1}$
    $(8.86\times 10^{-5})$
    $9.7301\times 10^{-1}$
    $(1.36\times 10^{-2}) -$
    $9.8919\times 10^{-1}$
    $(2.57\times 10^{-3}) \approx$
    $9.8905\times 10^{-1}$
    $(3.03\times 10^{-3}) -$
    $9.7826\times 10^{-1}$
    $(1.03\times 10^{-2}) -$
    $9.7895\times 10^{-1}$
    $(2.52\times 10^{-3}) -$
    $9.8939\times 10^{-1}$
    $(2.01\times 10^{-3}) -$
    DTLZ 5 3 $1.9397\times 10^{-1}$
    $(1.20\times 10^{-4})$
    $1.9223\times 10^{-1}$
    $(1.03\times 10^{-3}) -$
    $1.6284\times 10^{-1}$
    $(3.84\times 10^{-3}) -$
    $1.8376\times 10^{-1}$
    $(3.37\times 10^{-4}) -$
    $1.9214\times 10^{-1}$
    $(3.58\times 10^{-7}) -$
    $1.7826\times 10^{-1}$
    $(1.21\times 10^{-2}) -$
    $1.9283\times 10^{-1}$
    $(7.92\times 10^{-4}) -$
    5 $9.2958\times 10^{-2}$
    $(3.69\times 10^{-3})$
    $8.9794\times 10^{-2}$
    $(2.82\times 10^{-2}) \approx$
    $1.0617\times 10^{-1}$
    $(4.51\times 10^{-3}) +$
    $1.1298\times 10^{-1}$
    $(4.15\times 10^{-4}) +$
    $9.0987\times 10^{-2}$
    $(2.37\times 10^{-4}) -$
    $4.3747\times 10^{-2}$
    $(4.20\times 10^{-2}) -$
    $1.0603\times 10^{-1}$
    $(1.47\times 10^{-3}) +$
    10 $9.3278\times 10^{-2}$
    $(1.61\times 10^{-3})$
    $6.7279\times 10^{-3}$
    $(1.68\times 10^{-2}) -$
    $9.1255\times 10^{-2}$
    $(4.75\times 10^{-4}) -$
    $9.4192\times 10^{-2}$
    $(2.56\times 10^{-4}) +$
    $9.1736\times 10^{-2}$
    $(1.49\times 10^{-3}) -$
    $8.5522\times 10^{-2}$
    $(1.49\times 10^{-2}) -$
    $9.1402\times 10^{-2}$
    $(5.49\times 10^{-4}) -$
    15 $9.2486\times 10^{-2}$
    $(5.85\times 10^{-4})$
    $8.9842\times 10^{-2}$
    $(2.02\times 10^{-3}) -$
    $9.1006\times 10^{-2}$
    $(4.04\times 10^{-4}) -$
    $9.2026\times 10^{-2}$
    $(4.99\times 10^{-4}) -$
    $9.1297\times 10^{-2}$
    $(3.76\times 10^{-4}) -$
    $2.7606\times 10^{-2}$
    $(3.86\times 10^{-2}) -$
    $9.1402\times 10^{-2}$
    $(5.49\times 10^{-4}) -$
    DTLZ 6 3 $1.9395\times 10^{-1}$
    $(1.70\times 10^{-4})$
    $1.9013\times 10^{-1}$
    $(1.46\times 10^{-3}) -$
    $1.5924\times 10^{-1}$
    $(5.93\times 10^{-3}) -$
    $1.8333\times 10^{-1}$
    $(1.24\times 10^{-4}) -$
    $1.9214\times 10^{-1}$
    $(4.32\times 10^{-7}) -$
    $1.7447\times 10^{-1}$
    $(1.64\times 10^{-2}) -$
    $1.9123\times 10^{-1}$
    $(1.38\times 10^{-3}) -$
    5 $9.5588\times 10^{-2}$
    $(5.77\times 10^{-3})$
    $7.5292\times 10^{-2}$
    $(3.47\times 10^{-2}) -$
    $1.0069\times 10^{-1}$
    $(2.20\times 10^{-2}) +$
    $1.1288\times 10^{-1}$
    $(2.53\times 10^{-4}) +$
    $9.0926\times 10^{-2}$
    $(2.81\times 10^{-4}) -$
    $6.7599\times 10^{-2}$
    $(3.79\times 10^{-2}) -$
    $1.0428\times 10^{-1}$
    $(4.98\times 10^{-3}) +$
    10 $9.3189\times 10^{-2}$
    $(1.68\times 10^{-3})$
    $1.5582\times 10^{-2}$
    $(3.43\times 10^{-2}) -$
    $8.8629\times 10^{-2}$
    $(1.68\times 10^{-2}) -$
    $9.4287\times 10^{-2}$
    $(2.17\times 10^{-4}) \approx$
    $9.2894\times 10^{-2}$
    $(9.94\times 10^{-4}) \approx$
    $9.1003\times 10^{-2}$
    $(3.74\times 10^{-4}) -$
    $9.4393\times 10^{-2}$
    $(9.71\times 10^{-4}) \approx$
    15 $9.1311\times 10^{-2}$
    $(5.95\times 10^{-4})$
    $7.9684\times 10^{-3}$
    $(2.45\times 10^{-2}) -$
    $9.0626\times 10^{-2}$
    $(2.20\times 10^{-3}) \approx$
    $9.2156\times 10^{-2}$
    $(2.50\times 10^{-4}) +$
    $9.1576\times 10^{-2}$
    $(5.24\times 10^{-4}) +$
    $8.4945\times 10^{-2}$
    $(2.31\times 10^{-2}) -$
    $8.7853\times 10^{-2}$
    $(1.70\times 10^{-2}) -$
    DTLZ 7 3 $2.7062\times 10^{-1}$
    $(1.53\times 10^{-2})$
    $2.7423\times 10^{-1}$
    $(1.54\times 10^{-3}) +$
    $2.6741\times 10^{-1}$
    $(1.06\times 10^{-3}) -$
    $2.1817\times 10^{-1}$
    $(1.52\times 10^{-2}) -$
    $2.7096\times 10^{-1}$
    $(1.47\times 10^{-2}) \approx$
    $2.6196\times 10^{-1}$
    $(7.35\times 10^{-3}) -$
    $2.7791\times 10^{-1}$
    $(4.93\times 10^{-4}) \approx$
    5 $2.5738\times 10^{-1}$
    $(8.66\times 10^{-3})$
    $2.3857\times 10^{-1}$
    $(7.76\times 10^{-3}) -$
    $2.0656\times 10^{-1}$
    $(9.68\times 10^{-4}) -$
    $9.3745\times 10^{-2}$
    $(1.55\times 10^{-2}) -$
    $2.4331\times 10^{-1}$
    $(6.98\times 10^{-3}) -$
    $2.4015\times 10^{-1}$
    $(2.17\times 10^{-2}) -$
    $2.5103\times 10^{-1}$
    $(1.19\times 10^{-3}) -$
    10 $1.9133\times 10^{-1}$
    $(2.17\times 10^{-3})$
    $1.9640\times 10^{-1}$
    $(5.63\times 10^{-3}) +$
    $1.7601\times 10^{-1}$
    $(1.34\times 10^{-2}) -$
    $5.6536\times 10^{-5}$
    $(3.83\times 10^{-5}) -$
    $1.5718\times 10^{-1}$
    $(9.13\times 10^{-3}) -$
    $7.5216\times 10^{-2}$
    $(3.47\times 10^{-2}) -$
    $1.8524\times 10^{-1}$
    $(4.94\times 10^{-3}) -$
    15 $1.4909\times 10^{-1}$
    $(2.38\times 10^{-3})$
    $1.4039\times 10^{-1}$
    $(1.21\times 10^{-2}) -$
    $1.0542\times 10^{-1}$
    $(3.45\times 10^{-2}) -$
    $1.5473\times 10^{-7}$
    $(5.89\times 10^{-8}) -$
    $9.7466\times 10^{-2}$
    $(4.12\times 10^{-2}) -$
    $5.6787\times 10^{-4}$
    $(1.49\times 10^{-3}) -$
    $1.0880\times 10^{-1}$
    $(1.06\times 10^{-2}) -$
    $+$ / $\approx$ / $-$ 3 / 7 / 18 8 / 9 / 11 9 / 9 / 10 5 / 5 / 18 2 / 0 / 26 9 / 7 / 12
    $+$, $\approx$和$-$分别表示获得的结果与R2-RVEA相比更好, 相似和更差.
    下载: 导出CSV

    表  3  R2-RVEA、NSGA-Ⅲ、RVEA、MOEA/DD、MOMBI-Ⅱ、KnEA和TS-R2EA在DTLZ1~DTLZ7上获得的IGD+值的统计结果(均值和标准差). 最好的结果已突出

    Table  3  The statistical results (mean and standard deviation) of the IGD+ values obtained by R2-RVEA, NSGA-Ⅲ, RVEA, MOEA/DD, MOMBI-Ⅱ, KnEA and TS-R2EA on DTLZ1 to DTLZ7. The best results are highlighted

    问题 $M$ R2-RVEA NSGA-Ⅲ RVEA MOEA/DD MOMBI-Ⅱ KnEA TS-R2EA
    DTLZ 1 3 $1.6235\times 10^{-2}$
    $(7.90\times 10^{-3})$
    $1.3651\times 10^{-2}$
    $(3.29\times 10^{-4}) +$
    $1.3492\times 10^{-2}$
    $(1.25\times 10^{-4}) +$
    $1.3523\times 10^{-2}$
    $(1.48\times 10^{-4}) +$
    $1.3709\times 10^{-2}$
    $(2.71\times 10^{-4}) \approx$
    $2.6216\times 10^{-2}$
    $(9.65\times 10^{-3}) -$
    $1.3571\times 10^{-2}$
    $(3.33\times 10^{-4}) +$
    5 $5.0560\times 10^{-2}$
    $(6.33\times 10^{-3})$
    $7.3388\times 10^{-2}$
    $(7.15\times 10^{-2}) \approx$
    $4.6106\times 10^{-2}$
    $(3.46\times 10^{-4}) +$
    $4.5988\times 10^{-2}$
    $(1.35\times 10^{-4}) +$
    $4.8230\times 10^{-2}$
    $(5.92\times 10^{-3}) \approx$
    $9.3292\times 10^{-2}$
    $(4.42\times 10^{-2}) -$
    $5.3386\times 10^{-2}$
    $(4.06\times 10^{-2}) -$
    10 $1.0287\times 10^{-1}$
    $(8.43\times 10^{-3})$
    $9.0516\times 10^{-2}$
    $(5.74\times 10^{-2}) +$
    $7.5684\times 10^{-2}$
    $(3.45\times 10^{-2}) +$
    $6.9285\times 10^{-2}$
    $(4.56\times 10^{-4}) +$
    $1.3489\times 10^{-1}$
    $(3.62\times 10^{-2}) -$
    $2.7999\times 10^{-1}$
    $(5.22\times 10^{-2}) -$
    $7.9575\times 10^{-2}$
    $(3.48\times 10^{-2}) +$
    15 $2.8426\times 10^{-1}$
    $(1.82\times 10^{-1})$
    $5.2357\times 10^{-1}$
    $(3.38\times 10^{-1}) -$
    $2.0300\times 10^{-1}$
    $(1.82\times 10^{-1}) +$
    $1.2789\times 10^{-1}$
    $(8.21\times 10^{-2}) +$
    $2.8165\times 10^{-1}$
    $(1.00\times 10^{-1}) \approx$
    $9.0915\times 10^{-1}$
    $(7.61\times 10^{-1}) -$
    $2.7442\times 10^{-1}$
    $(3.09\times 10^{-1}) \approx$
    DTLZ 2 3 $2.0861\times 10^{-2}$
    $(5.70\times 10^{-6})$
    $2.0859\times 10^{-2}$
    $(8.08\times 10^{-7}) \approx$
    $2.0859\times 10^{-2}$
    $(5.36\times 10^{-7}) \approx$
    $2.0859\times 10^{-2}$
    $(2.57\times 10^{-7}) \approx$
    $2.0870\times 10^{-2}$
    $(8.77\times 10^{-6}) -$
    $3.6494\times 10^{-2}$
    $(5.13\times 10^{-3}) -$
    $2.0861\times 10^{-2}$
    $(1.10\times 10^{-6}) -$
    5 $7.1279\times 10^{-2}$
    $(7.27\times 10^{-6})$
    $7.1282\times 10^{-2}$
    $(1.80\times 10^{-6}) -$
    $7.1283\times 10^{-2}$
    $(5.39\times 10^{-6}) -$
    $7.1283\times 10^{-2}$
    $(6.73\times 10^{-7}) -$
    $7.1348\times 10^{-2}$
    $(4.27\times 10^{-5}) -$
    $8.9581\times 10^{-2}$
    $(4.33\times 10^{-3}) -$
    $7.1291\times 10^{-2}$
    $(4.32\times 10^{-6}) -$
    10 $1.7493\times 10^{-1}$
    $(2.35\times 10^{-5})$
    $1.9840\times 10^{-1}$
    $(4.82\times 10^{-2}) -$
    $1.6809\times 10^{-1}$
    $(2.66\times 10^{-5}) +$
    $1.7493\times 10^{-1}$
    $(4.25\times 10^{-6}) \approx$
    $1.6874\times 10^{-1}$
    $(1.06\times 10^{-3}) +$
    $1.8012\times 10^{-1}$
    $(5.20\times 10^{-3}) -$
    $1.7207\times 10^{-1}$
    $(3.32\times 10^{-4}) \approx$
    15 $2.3684\times 10^{-1}$
    $(4.10\times 10^{-4})$
    $2.9249\times 10^{-1}$
    $(1.82\times 10^{-2}) -$
    $2.6116\times 10^{-1}$
    $(8.95\times 10^{-2}) -$
    $2.3623\times 10^{-1}$
    $(2.02\times 10^{-4}) \approx$
    $4.0323\times 10^{-1}$
    $(5.54\times 10^{-2}) -$
    $2.4998\times 10^{-1}$
    $(1.79\times 10^{-2}) -$
    $2.3856\times 10^{-1}$
    $(1.96\times 10^{-3}) -$
    DTLZ 3 3 $3.9763\times 10^{-1}$
    $(5.49\times 10^{-1})$
    $4.5849\times 10^{-1}$
    $(6.21\times 10^{-1}) \approx$
    $3.0314\times 10^{-1}$
    $(5.74\times 10^{-1}) \approx$
    $1.8948\times 10^{-1}$
    $(3.71\times 10^{-1}) +$
    $3.3114\times 10^{-1}$
    $(6.46\times 10^{-1}) \approx$
    $4.0938\times 10^{-1}$
    $(4.78\times 10^{-1}) -$
    $2.2115\times 10^{-1}$
    $(4.00\times 10^{-1}) +$
    5 $3.9944\times 10^{-1}$
    $(5.79\times 10^{-1})$
    $1.7578\times 10^{0}$
    $(1.67\times 10^{0}) -$
    $7.4422\times 10^{-1}$
    $(5.86\times 10^{-1}) \approx$
    $6.5811\times 10^{-1}$
    $(5.59\times 10^{-1}) \approx$
    $3.7339\times 10^{-1}$
    $(5.22\times 10^{-1}) +$
    $9.7538\times 10^{-1}$
    $(1.31\times 10^{0}) -$
    $4.6878\times 10^{-1}$
    $(5.40\times 10^{-1}) -$
    10 $3.7208\times 10^{-1}$
    $(4.00\times 10^{-1})$
    $3.2503\times 10^{0}$
    $(3.09\times 10^{0}) -$
    $4.5932\times 10^{-1}$
    $(5.80\times 10^{-1}) -$
    $4.9410\times 10^{-1}$
    $(5.27\times 10^{-1}) -$
    $3.9303\times 10^{-1}$
    $(3.16\times 10^{-1}) \approx$
    $1.1755\times 10^{1}$
    $(5.73\times 10^{1}) -$
    $3.9429\times 10^{-1}$
    $(4.89\times 10^{-1}) -$
    15 $2.6642\times 10^{0}$
    $(1.48\times 10^{0})$
    $9.7830\times 10^{0}$
    $(5.23\times 10^{0}) -$
    $5.2490\times 10^{0}$
    $(4.15\times 10^{0}) \approx$
    $2.7498\times 10^{0}$
    $(2.09\times 10^{0}) -$
    $3.1399\times 10^{0}$
    $(2.60\times 10^{0}) \approx$
    $1.3145\times 10^{1}$
    $(8.69\times 10^{0}) -$
    $3.3117\times 10^{0}$
    $(2.18\times 10^{0}) -$
    DTLZ 4 3 $2.0868\times 10^{-2}$
    $(1.87\times 10^{-5})$
    $7.5928\times 10^{-2}$
    $(9.29\times 10^{-2}) \approx$
    $2.0859\times 10^{-2}$
    $(4.09\times 10^{-7}) \approx$
    $2.0859\times 10^{-2}$
    $(2.72\times 10^{-7}) +$
    $4.1428\times 10^{-2}$
    $(6.27\times 10^{-2}) -$
    $7.7586\times 10^{-2}$
    $(1.50\times 10^{-1}) -$
    $2.0862\times 10^{-2}$
    $(1.74\times 10^{-6}) \approx$
    5 $7.1276\times 10^{-2}$
    $(1.24\times 10^{-5})$
    $9.3899\times 10^{-2}$
    $(5.00\times 10^{-2}) -$
    $7.4060\times 10^{-2}$
    $(1.52\times 10^{-2}) -$
    $7.4382\times 10^{-2}$
    $(1.70\times 10^{-2}) -$
    $8.2438\times 10^{-2}$
    $(2.87\times 10^{-2}) -$
    $8.0641\times 10^{-2}$
    $(1.73\times 10^{-3}) -$
    $7.4077\times 10^{-2}$
    $(1.52\times 10^{-3}) -$
    10 $1.7497\times 10^{-1}$
    $(4.67\times 10^{-5})$
    $1.7695\times 10^{-1}$
    $(2.02\times 10^{-2}) -$
    $1.6849\times 10^{-1}$
    $(1.77\times 10^{-3}) \approx$
    $1.7081\times 10^{-1}$
    $(3.43\times 10^{-3}) \approx$
    $1.6532\times 10^{-1}$
    $(6.13\times 10^{-3}) +$
    $1.6217\times 10^{-1}$
    $(2.21\times 10^{-3}) +$
    $1.6820\times 10^{-1}$
    $(5.03\times 10^{-4}) \approx$
    15 $2.3729\times 10^{-1}$
    $(3.58\times 10^{-4})$
    $2.6180\times 10^{-1}$
    $(2.54\times 10^{-2}) \approx$
    $2.3958\times 10^{-1}$
    $(4.59\times 10^{-3}) \approx$
    $2.4240\times 10^{-1}$
    $(6.98\times 10^{-3}) -$
    $2.6824\times 10^{-1}$
    $(2.33\times 10^{-2}) -$
    $2.3292\times 10^{-1}$
    $(3.23\times 10^{-3}) +$
    $2.4469\times 10^{-1}$
    $(8.10\times 10^{-3}) -$
    DTLZ 5 3 $6.4126\times 10^{-3}$
    $(1.23\times 10^{-4})$
    $7.5607\times 10^{-3}$
    $(8.01\times 10^{-4}) -$
    $3.3584\times 10^{-2}$
    $(4.19\times 10^{-3}) -$
    $1.3345\times 10^{-2}$
    $(3.02\times 10^{-4}) -$
    $7.6588\times 10^{-3}$
    $(3.38\times 10^{-7}) -$
    $1.4326\times 10^{-2}$
    $(7.18\times 10^{-3}) -$
    $7.1355\times 10^{-3}$
    $(5.09\times 10^{-4}) -$
    5 $8.2311\times 10^{-2}$
    $(1.90\times 10^{-2})$
    $2.3956\times 10^{-1}$
    $(2.11\times 10^{-1}) -$
    $1.7521\times 10^{-1}$
    $(5.25\times 10^{-2}) -$
    $7.2412\times 10^{-2}$
    $(6.75\times 10^{-3}) \approx$
    $9.4200\times 10^{-2}$
    $(3.23\times 10^{-5}) -$
    $2.4871\times 10^{-1}$
    $(1.59\times 10^{-1}) -$
    $3.8136\times 10^{-2}$
    $(4.16\times 10^{-3}) +$
    10 $1.2919\times 10^{-1}$
    $(4.14\times 10^{-2})$
    $4.5326\times 10^{-1}$
    $(1.29\times 10^{-1}) -$
    $1.7827\times 10^{-1}$
    $(6.47\times 10^{-2}) -$
    $9.8182\times 10^{-2}$
    $(1.79\times 10^{-2}) +$
    $3.5774\times 10^{-1}$
    $(4.93\times 10^{-2}) -$
    $8.4408\times 10^{-2}$
    $(9.10\times 10^{-3}) +$
    $1.0774\times 10^{-1}$
    $(1.94\times 10^{-2}) \approx$
    15 $1.5729\times 10^{-1}$
    $(9.70\times 10^{-2})$
    $1.5942\times 10^{-1}$
    $(7.13\times 10^{-2}) \approx$
    $3.5936\times 10^{-1}$
    $(5.81\times 10^{-2}) -$
    $5.1183\times 10^{-2}$
    $(1.74\times 10^{-3}) +$
    $3.7512\times 10^{-1}$
    $(2.29\times 10^{-3}) -$
    $3.3561\times 10^{-1}$
    $(2.97\times 10^{-1}) -$
    $1.3229\times 10^{-1}$
    $(6.34\times 10^{-2}) \approx$
    DTLZ 6 3 $6.4261\times 10^{-3}$
    $(8.57\times 10^{-5}$
    $9.1282\times 10^{-3}$
    $(1.10\times 10^{-3}) -$
    $3.3761\times 10^{-2}$
    $(8.06\times 10^{-3}) -$
    $1.3955\times 10^{-2}$
    $(5.10\times 10^{-4}) -$
    $7.6585\times 10^{-3}$
    $(2.94\times 10^{-7}) -$
    $6.0051\times 10^{-2}$
    $(1.07\times 10^{-2}) -$
    $7.4448\times 10^{-3}$
    $(7.09\times 10^{-4}) -$
    5 $8.1474\times 10^{-2}$
    $(1.79\times 10^{-2})$
    $2.3445\times 10^{-1}$
    $(1.04\times 10^{-1}) -$
    $1.0892\times 10^{-1}$
    $(1.71\times 10^{-2}) -$
    $7.1693\times 10^{-2}$
    $(3.07\times 10^{-3}) +$
    $8.4850\times 10^{-2}$
    $(3.26\times 10^{-4}) -$
    $2.0779\times 10^{-1}$
    $(2.06\times 10^{-1}) -$
    $5.8034\times 10^{-2}$
    $(6.23\times 10^{-3}) +$
    10 $7.1984\times 10^{-2}$
    $(1.08\times 10^{-2})$
    $1.6206\times 10^{0}$
    $(1.01\times 10^{0}) -$
    $2.3439\times 10^{-1}$
    $(5.94\times 10^{-2}) -$
    $7.7284\times 10^{-2}$
    $(2.48\times 10^{-2}) \approx$
    $3.5367\times 10^{-1}$
    $(4.32\times 10^{-2}) -$
    $1.0960\times 10^{-1}$
    $(7.24\times 10^{-2}) -$
    $6.0540\times 10^{-2}$
    $(3.57\times 10^{-2}) +$
    15 $2.1340\times 10^{-1}$
    $(9.95\times 10^{-2})$
    $1.8744\times 10^{0}$
    $(1.17\times 10^{0}) -$
    $1.8445\times 10^{-1}$
    $(1.19\times 10^{-1}) \approx$
    $5.1647\times 10^{-2}$
    $(2.71\times 10^{-6}) +$
    $3.7468\times 10^{-1}$
    $(4.84\times 10^{-3}) -$
    $2.9365\times 10^{-1}$
    $(2.46\times 10^{-1}) \approx$
    $1.1096\times 10^{-1}$
    $(1.49\times 10^{-1}) +$
    DTLZ 7 3 $9.8407\times 10^{-2}$
    $(1.34\times 10^{-1})$
    $3.5754\times 10^{-2}$
    $(2.15\times 10^{-3}) +$
    $4.3704\times 10^{-2}$
    $(9.60\times 10^{-4}) +$
    $3.9831\times 10^{-1}$
    $(1.74\times 10^{-1}) -$
    $4.6134\times 10^{-2}$
    $(4.79\times 10^{-2}) \approx$
    $7.1748\times 10^{-2}$
    $(6.52\times 10^{-2}) +$
    $3.4202\times 10^{-2}$
    $(6.64\times 10^{-4}) +$
    5 $1.9604\times 10^{-1}$
    $(5.86\times 10^{-2})$
    $1.8190\times 10^{-1}$
    $(2.52\times 10^{-2}) \approx$
    $2.7929\times 10^{0}$
    $(5.66\times 10^{-2}) -$
    $2.5348\times 10^{-1}$
    $(1.65\times 10^{-1}) \approx$
    $1.1096\times 10^{-1}$
    $(1.49\times 10^{-1}) +$
    $2.0713\times 10^{-1}$
    $(1.30\times 10^{-1}) \approx$
    $1.4313\times 10^{-1}$
    $(9.53\times 10^{-4}) +$
    10 $1.2600\times 10^{0}$
    $(2.10\times 10^{-2})$
    $6.6488\times 10^{-1}$
    $(4.91\times 10^{-2}) +$
    $1.0133\times 10^{0}$
    $(5.93\times 10^{-2}) +$
    $1.2994\times 10^{0}$
    $(6.05\times 10^{-2}) -$
    $4.5256\times 10^{0}$
    $(8.62\times 10^{-1}) -$
    $6.6322\times 10^{-1}$
    $(9.13\times 10^{-3}) +$
    $6.9956\times 10^{-1}$
    $(1.88\times 10^{-1}) +$
    15 $8.3596\times 10^{0}$
    $(3.76\times 10^{-2})$
    $7.3318\times 10^{0}$
    $(1.12\times 10^{0}) +$
    $1.5286\times 10^{0}$
    $(8.28\times 10^{-2}) +$
    $2.0686\times 10^{0}$
    $(1.74\times 10^{-1}) +$
    $1.1458\times 10^{1}$
    $(1.70\times 10^{0}) -$
    $4.7916\times 10^{0}$
    $(9.31\times 10^{-1}) +$
    $2.0481\times 10^{0}$
    $(6.97\times 10^{-1}) +$
    $+$ / $\approx$ / $-$ 5 / 7 / 16 8 / 8 / 12 11 / 7 / 10 3 / 8 / 17 6 / 2 / 20 11 / 6 / 11
    $+$, $\approx$和$-$分别表示获得的结果与R2-RVEA相比更好, 相似和更差.
    下载: 导出CSV

    表  4  R2-RVEA、NSGA-Ⅲ、RVEA、MOEA/DD、MOMBI-Ⅱ、KnEA和TS-R2EA在WFG1-WFG9上获得的HV值的统计结果(均值和标准差). 最好的结果已突出

    Table  4  The statistical results (mean and standard deviation) of the HV values obtained by R2-RVEA, NSGA-Ⅲ, RVEA, MOEA/DD, MOMBI-Ⅱ, KnEA and TS-R2EA on WFG1 to WFG9. The best results are highlighted

    问题 $M$ R2-RVEA NSGA-Ⅲ RVEA MOEA/DD MOMBI-Ⅱ KnEA TS-R2EA
    WFG 1 3 $9.4097\times 10^{-1}$
    $(1.32\times 10^{-2})$
    $9.3384\times 10^{-1}$
    $(2.98\times 10^{-2}) -$
    $9.4502\times 10^{-1}$
    $(1.09\times 10^{-3}) +$
    $9.1553\times 10^{-1}$
    $(3.55\times 10^{-2}) -$
    $8.8329\times 10^{-1}$
    $(5.34\times 10^{-2}) -$
    $9.2399\times 10^{-1}$
    $(2.53\times 10^{-2}) -$
    $9.3418\times 10^{-1}$
    $(3.48\times 10^{-2}) -$
    5 $9.9456\times 10^{-1}$
    $(1.96\times 10^{-2})$
    $9.8643\times 10^{-1}$
    $(3.60\times 10^{-2}) -$
    $9.8018\times 10^{-1}$
    $(4.06\times 10^{-2}) -$
    $9.5451\times 10^{-1}$
    $(3.40\times 10^{-2}) -$
    $8.4739\times 10^{-1}$
    $(8.49\times 10^{-2}) -$
    $9.7995\times 10^{-1}$
    $(1.87\times 10^{-2}) -$
    $9.9075\times 10^{-1}$
    $(2.82\times 10^{-2}) -$
    10 $9.9957\times 10^{-1}$
    $(2.10\times 10^{-4})$
    $9.9912\times 10^{-1}$
    $(6.70\times 10^{-4}) -$
    $9.8000\times 10^{-1}$
    $(3.93\times 10^{-2}) -$
    $9.8795\times 10^{-1}$
    $(1.55\times 10^{-2}) -$
    $9.9607\times 10^{-1}$
    $(1.91\times 10^{-2}) -$
    $9.9527\times 10^{-1}$
    $(1.66\times 10^{-2}) -$
    $9.9888\times 10^{-1}$
    $(3.64\times 10^{-2}) -$
    15 $9.9967\times 10^{-1}$
    $(2.14\times 10^{-4})$
    $9.9949\times 10^{-1}$
    $(3.42\times 10^{-4}) -$
    $8.9713\times 10^{-1}$
    $(8.87\times 10^{-2}) -$
    $9.3763\times 10^{-1}$
    $(7.46\times 10^{-2}) -$
    $6.5027\times 10^{-1}$
    $(2.44\times 10^{-1}) -$
    $9.8089\times 10^{-1}$
    $(3.34\times 10^{-2}) -$
    $9.4320\times 10^{-1}$
    $(7.47\times 10^{-2}) -$
    WFG 2 3 $9.2138\times 10^{-1}$
    $(8.02\times 10^{-3})$
    $9.2385\times 10^{-1}$
    $(6.17\times 10^{-3}) \approx$
    $9.1683\times 10^{-1}$
    $(1.11\times 10^{-2}) \approx$
    $9.1463\times 10^{-1}$
    $(1.22\times 10^{-2}) -$
    $9.1075\times 10^{-1}$
    $(1.81\times 10^{-2}) -$
    $9.0896\times 10^{-1}$
    $(2.65\times 10^{-2}) -$
    $9.2318\times 10^{-1}$
    $(1.17\times 10^{-2}) \approx$
    5 $9.8369\times 10^{-1}$
    $(6.66\times 10^{-3})$
    $9.8358\times 10^{-1}$
    $(7.88\times 10^{-3}) \approx$
    $9.5373\times 10^{-1}$
    $(1.83\times 10^{-2}) -$
    $9.5536\times 10^{-1}$
    $(1.32\times 10^{-2}) -$
    $9.6469\times 10^{-1}$
    $(1.80\times 10^{-2}) -$
    $9.6900\times 10^{-1}$
    $(1.21\times 10^{-2}) -$
    $9.7339\times 10^{-1}$
    $(1.56\times 10^{-2}) -$
    10 $9.9168\times 10^{-1}$
    $(4.71\times 10^{-3})$
    $9.8734\times 10^{-1}$
    $(6.36\times 10^{-3}) -$
    $9.3682\times 10^{-1}$
    $(2.27\times 10^{-2}) -$
    $9.3481\times 10^{-1}$
    $(1.89\times 10^{-2}) -$
    $9.7730\times 10^{-1}$
    $(1.08\times 10^{-2}) -$
    $9.8285\times 10^{-1}$
    $(7.58\times 10^{-3}) -$
    $9.6436\times 10^{-1}$
    $(2.13\times 10^{-2}) -$
    15 $9.5064\times 10^{-1}$
    $(5.65\times 10^{-2})$
    $9.5605\times 10^{-1}$
    $(1.68\times 10^{-2}) +$
    $8.3087\times 10^{-1}$
    $(5.14\times 10^{-2}) -$
    $8.6774\times 10^{-1}$
    $(3.16\times 10^{-2}) -$
    $6.0421\times 10^{-1}$
    $(2.45\times 10^{-1}) -$
    $9.2373\times 10^{-1}$
    $(3.23\times 10^{-2}) -$
    $8.9358\times 10^{-1}$
    $(4.33\times 10^{-2}) -$
    WFG 3 3 $4.0241\times 10^{-1}$
    $(3.81\times 10^{-3})$
    $3.9175\times 10^{-1}$
    $(5.04\times 10^{-3}) -$
    $3.4039\times 10^{-1}$
    $(7.94\times 10^{-3}) -$
    $3.0897\times 10^{-1}$
    $(3.30\times 10^{-2}) -$
    $3.9392\times 10^{-1}$
    $(6.40\times 10^{-3}) -$
    $3.7363\times 10^{-1}$
    $(2.71\times 10^{-2}) -$
    $3.9530\times 10^{-1}$
    $(4.16\times 10^{-3}) -$
    5 $1.9039\times 10^{-1}$
    $(9.10\times 10^{-3})$
    $1.6387\times 10^{-1}$
    $(2.03\times 10^{-2}) -$
    $9.9662\times 10^{-2}$
    $(4.07\times 10^{-2}) -$
    $1.1461\times 10^{-1}$
    $(2.06\times 10^{-2}) -$
    $8.9617\times 10^{-2}$
    $(3.75\times 10^{-3}) -$
    $7.9870\times 10^{-2}$
    $(2.78\times 10^{-2}) -$
    $1.5854\times 10^{-1}$
    $(2.35\times 10^{-2}) -$
    10 $2.7662\times 10^{-2}$
    $(3.29\times 10^{-2})$
    $2.3762\times 10^{-2}$
    $(2.69\times 10^{-2}) \approx$
    $0.0000\times 10^{0}$
    $(0.00\times 10^{0}) -$
    $0.0000\times 10^{0}$
    $(0.00\times 10^{0}) -$
    $5.9165\times 10^{-4}$
    $(2.45\times 10^{-3}) -$
    $0.0000\times 10^{0}$
    $(0.00\times 10^{0}) -$
    $2.6821\times 10^{-2}$
    $(3.10e-2) \approx$
    15 $0.0000\times 10^{0}$
    $(0.00\times 10^{0})$
    $0.0000\times 10^{0}$
    $(0.00\times 10^{0}) \approx$
    $0.0000\times 10^{0}$
    $(0.00\times 10^{0}) \approx$
    $0.0000\times 10^{0}$
    $(0.00\times 10^{0}) \approx$
    $0.0000\times 10^{0}$
    $(0.00\times 10^{0}) \approx$
    $0.0000\times 10^{0}$
    $(0.00\times 10^{0}) \approx$
    $0.0000\times 10^{0}$
    $(0.00\times 10^{0}) \approx$
    WFG 4 3 $5.6274\times 10^{-1}$
    $(1.26\times 10^{-4})$
    $5.6274\times 10^{-1}$
    $(1.44\times 10^{-4}) \approx$
    $5.6096\times 10^{-1}$
    $(5.24\times 10^{-4}) -$
    $5.5434\times 10^{-1}$
    $(9.95\times 10^{-4}) -$
    $5.6138\times 10^{-1}$
    $(3.92\times 10^{-3}) \approx$
    $5.4879\times 10^{-1}$
    $(2.74\times 10^{-3}) -$
    $5.6251\times 10^{-1}$
    $(3.63\times 10^{-4}) -$
    5 $7.9406\times 10^{-1}$
    $(7.67\times 10^{-4})$
    $7.9388\times 10^{-1}$
    $(6.34\times 10^{-4}) \approx$
    $7.9302\times 10^{-1}$
    $(9.54\times 10^{-4}) -$
    $7.6900\times 10^{-1}$
    $(8.68\times 10^{-4}) -$
    $7.8312\times 10^{-1}$
    $(2.45\times 10^{-2}) -$
    $7.7583\times 10^{-1}$
    $(4.18\times 10^{-3}) -$
    $7.9231\times 10^{-1}$
    $(1.58\times 10^{-3}) -$
    10 $9.6852\times 10^{-1}$
    $(7.59\times 10^{-4})$
    $9.6031\times 10^{-1}$
    $(2.55\times 10^{-4}) -$
    $9.6066\times 10^{-1}$
    $(4.21\times 10^{-3}) -$
    $7.6825\times 10^{-1}$
    $(2.17\times 10^{-4}) -$
    $9.2141\times 10^{-1}$
    $(6.09\times 10^{-4}) -$
    $9.5839\times 10^{-1}$
    $(2.16\times 10^{-3}) -$
    $9.7052\times 10^{-1}$
    $(7.92\times 10^{-4}) +$
    15 $9.8874\times 10^{-1}$
    $(9.66\times 10^{-4})$
    $9.6088\times 10^{-1}$
    $(2.38\times 10^{-2}) -$
    $9.5446\times 10^{-1}$
    $(1.55\times 10^{-2}) -$
    $6.4744\times 10^{-1}$
    $(1.70\times 10^{-1}) -$
    $3.9343\times 10^{-1}$
    $(1.22\times 10^{-1}) -$
    $9.8038\times 10^{-1}$
    $(4.46\times 10^{-3}) -$
    $9.8298\times 10^{-1}$
    $(3.55\times 10^{-3}) -$
    WFG 5 3 $5.2186\times 10^{-1}$
    $(1.51\times 10^{-5})$
    $5.2185\times 10^{-1}$
    $(1.81\times 10^{-5}) -$
    $5.2114\times 10^{-1}$
    $(2.33\times 10^{-4}) -$
    $5.1405\times 10^{-1}$
    $(4.53\times 10^{-4}) -$
    $5.0698\times 10^{-1}$
    $(2.74\times 10^{-3}) -$
    $5.0698\times 10^{-1}$
    $(2.74\times 10^{-3}) -$
    $5.2191\times 10^{-1}$
    $(2.07\times 10^{-4}) \approx$
    5 $7.4397\times 10^{-1}$
    $(3.66\times 10^{-4})$
    $7.4384\times 10^{-1}$
    $(3.37\times 10^{-4}) \approx$
    $7.4391\times 10^{-1}$
    $(3.63\times 10^{-4}) \approx$
    $7.1885\times 10^{-1}$
    $(5.68\times 10^{-4}) -$
    $7.2692\times 10^{-1}$
    $(1.26\times 10^{-2}) -$
    $7.2414\times 10^{-1}$
    $(3.96\times 10^{-3}) -$
    $7.4386\times 10^{-1}$
    $(1.17\times 10^{-3}) \approx$
    10 $9.0487\times 10^{-1}$
    $(1.77\times 10^{-4})$
    $9.0484\times 10^{-1}$
    $(1.53\times 10^{-4}) \approx$
    $9.0455\times 10^{-1}$
    $(2.23\times 10^{-4}) -$
    $7.8469\times 10^{-1}$
    $(1.21\times 10^{-2}) -$
    $8.6080\times 10^{-1}$
    $(1.05\times 10^{-2}) -$
    $8.9513\times 10^{-1}$
    $(1.94\times 10^{-3}) -$
    $9.0589\times 10^{-1}$
    $(2.49\times 10^{-4}) +$
    15 $9.1757\times 10^{-1}$
    $(1.11\times 10^{-4})$
    $9.1595\times 10^{-1}$
    $(6.23\times 10^{-3}) -$
    $9.1767\times 10^{-1}$
    $(9.41\times 10^{-5}) +$
    $6.3350\times 10^{-1}$
    $(2.39\times 10^{-2}) -$
    $1.6774\times 10^{-1}$
    $(4.92\times 10^{-2}) -$
    $9.0854\times 10^{-1}$
    $(4.69\times 10^{-3}) -$
    $9.1762\times 10^{-1}$
    $(1.33\times 10^{-4}) \approx$
    WFG 6 3 $5.0818\times 10^{-1}$
    $(1.36\times 10^{-2})$
    $5.1243\times 10^{-1}$
    $(1.32\times 10^{-2}) \approx$
    $5.0823\times 10^{-1}$
    $(1.24\times 10^{-2}) \approx$
    $5.0420\times 10^{-1}$
    $(1.45\times 10^{-2}) \approx$
    $5.0752\times 10^{-1}$
    $(1.29\times 10^{-2}) \approx$
    $4.8204\times 10^{-1}$
    $(1.70\times 10^{-2}) -$
    $5.0745\times 10^{-1}$
    $(1.42\times 10^{-2}) \approx$
    5 $7.2593\times 10^{-1}$
    $(1.41\times 10^{-2})$
    $7.3070\times 10^{-1}$
    $(1.66\times 10^{-2}) \approx$
    $7.3015\times 10^{-1}$
    $(1.90\times 10^{-2}) \approx$
    $6.9856\times 10^{-1}$
    $(2.16\times 10^{-2}) -$
    $7.1566\times 10^{-1}$
    $(2.87\times 10^{-2}) \approx$
    $6.8244\times 10^{-1}$
    $(2.81\times 10^{-2}) -$
    $7.3271\times 10^{-1}$
    $(1.64\times 10^{-2}) \approx$
    10 $8.8346\times 10^{-1}$
    $(1.26\times 10^{-2})$
    $8.8339\times 10^{-1}$
    $(1.97\times 10^{-2}) \approx$
    $8.7673\times 10^{-1}$
    $(2.06\times 10^{-2}) \approx$
    $7.2135\times 10^{-1}$
    $(2.21\times 10^{-2}) -$
    $8.8534\times 10^{-1}$
    $(3.14\times 10^{-2}) \approx$
    $8.5253\times 10^{-1}$
    $(2.22\times 10^{-2}) -$
    $8.7590\times 10^{-1}$
    $(1.91\times 10^{-2}) -$
    15 $8.9305\times 10^{-1}$
    $(2.01\times 10^{-2})$
    $8.3062\times 10^{-1}$
    $(3.59\times 10^{-2}) -$
    $7.0352\times 10^{-1}$
    $(8.04\times 10^{-2}) -$
    $5.8993\times 10^{-1}$
    $(4.37\times 10^{-2}) -$
    $4.7510\times 10^{-1}$
    $(1.49\times 10^{-1}) -$
    $8.6942\times 10^{-1}$
    $(3.32\times 10^{-2}) -$
    $8.8273\times 10^{-1}$
    $(2.84\times 10^{-2}) -$
    WFG 7 3 $5.6255\times 10^{-1}$
    $(1.73\times 10^{-4})$
    $5.6251\times 10^{-1}$
    $(1.49\times 10^{-4}) \approx$
    $5.5223\times 10^{-1}$
    $(1.21\times 10^{-3}) -$
    $8.8273\times 10^{-1}$
    $(2.84\times 10^{-2}) -$
    $5.6238\times 10^{-1}$
    $(2.13\times 10^{-3}) -$
    $5.4818\times 10^{-1}$
    $(4.75\times 10^{-3}) -$
    $5.6293\times 10^{-1}$
    $(4.19\times 10^{-5}) +$
    5 $7.9328\times 10^{-1}$
    $(5.69\times 10^{-4})$
    $7.9299\times 10^{-1}$
    $(5.80\times 10^{-4}) \approx$
    $7.9151\times 10^{-1}$
    $(1.86\times 10^{-3}) -$
    $7.6426\times 10^{-1}$
    $(5.52\times 10^{-3}) -$
    $7.8989\times 10^{-1}$
    $(6.21\times 10^{-3}) \approx$
    $7.6829\times 10^{-1}$
    $(8.45\times 10^{-3}) -$
    $7.9436\times 10^{-1}$
    $(5.86\times 10^{-4}) +$
    10 $9.6815\times 10^{-1}$
    $(4.10\times 10^{-4})$
    $9.6270\times 10^{-1}$
    $(1.43\times 10^{-2}) -$
    $9.6055\times 10^{-1}$
    $(3.10\times 10^{-3}) -$
    $8.3568\times 10^{-1}$
    $(2.25\times 10^{-2}) -$
    $9.7072\times 10^{-1}$
    $(1.25\times 10^{-3}) +$
    $9.5292\times 10^{-1}$
    $(3.13\times 10^{-3}) -$
    $9.7156\times 10^{-1}$
    $(8.72\times 10^{-4}) +$
    15 $9.9017\times 10^{-1}$
    $(2.80\times 10^{-4})$
    $9.6427\times 10^{-1}$
    $(1.91\times 10^{-2}) -$
    $5.4561\times 10^{-1}$
    $(2.74\times 10^{-1}) -$
    $7.8897\times 10^{-1}$
    $(1.15\times 10^{-1}) -$
    $5.8748\times 10^{-1}$
    $(1.09\times 10^{-1}) -$
    $9.8220\times 10^{-1}$
    $(7.12\times 10^{-3}) -$
    $9.8688\times 10^{-1}$
    $(5.62\times 10^{-3}) -$
    WFG 8 3 $4.7920\times 10^{-1}$
    $(1.78\times 10^{-3})$
    $4.8088\times 10^{-1}$
    $(2.04\times 10^{-3}) +$
    $4.7329\times 10^{-1}$
    $(3.40\times 10^{-3}) -$
    $4.6512\times 10^{-1}$
    $(1.17\times 10^{-2}) -$
    $4.5390\times 10^{-1}$
    $(3.39\times 10^{-3}) -$
    $4.5340\times 10^{-1}$
    $(5.55\times 10^{-3}) -$
    $4.8156\times 10^{-1}$
    $(2.27\times 10^{-3}) +$
    5 $6.8175\times 10^{-1}$
    (1.97\times 10^{-3})$
    $6.8490\times 10^{-1}$
    $(2.98\times 10^{-3}) +$
    $6.6856\times 10^{-1}$
    $(1.16\times 10^{-2}) -$
    $6.5481\times 10^{-1}$
    $(1.50\times 10^{-2}) -$
    $3.1317\times 10^{-1}$
    $(8.51\times 10^{-3}) -$
    $6.3578\times 10^{-1}$
    $(4.91\times 10^{-3}) -$
    $6.7843\times 10^{-1}$
    $(2.33\times 10^{-3}) -$
    10 $8.8077\times 10^{-1}$
    (8.46\times 10^{-3})$
    $8.4591\times 10^{-1}$
    $(3.70\times 10^{-2}) -$
    $7.6098\times 10^{-1}$
    $(7.42\times 10^{-2}) -$
    $6.1624\times 10^{-1}$
    $(1.02\times 10^{-1}) -$
    $6.3967\times 10^{-1}$
    $(2.31\times 10^{-2}) -$
    $7.9730\times 10^{-1}$
    $(6.81\times 10^{-2}) -$
    $8.9025\times 10^{-1}$
    $(1.77\times 10^{-2}) \approx$
    15 $9.1659\times 10^{-1}$
    $(1.34\times 10^{-2})$
    $8.3508\times 10^{-1}$
    $(4.47\times 10^{-2}) -$
    $4.6196\times 10^{-1}$
    $(1.35\times 10^{-1}) -$
    $7.6426\times 10^{-1}$
    $(1.77\times 10^{-1}) -$
    $3.3899\times 10^{-1}$
    $(4.96\times 10^{-2}) -$
    $7.9415\times 10^{-1}$
    $(1.18\times 10^{-1}) -$
    $7.6663\times 10^{-1}$
    $(9.90\times 10^{-2}) -$
    WFG 9 3 $5.4672\times 10^{-1}$
    $(4.01\times 10^{-3})$
    $5.4305\times 10^{-1}$
    $(4.39\times 10^{-3}) -$
    $5.4556\times 10^{-1}$
    $(4.15\times 10^{-3}) \approx$
    $5.3250\times 10^{-1}$
    $(7.93\times 10^{-3}) -$
    $5.1727\times 10^{-1}$
    $(6.14\times 10^{-3}) -$
    $5.3388\times 10^{-1}$
    $(3.57\times 10^{-2}) -$
    $5.5169\times 10^{-1}$
    $(2.77\times 10^{-3}) +$
    5 $7.4690\times 10^{-1}$
    $(7.37\times 10^{-3})$
    $7.2964\times 10^{-1}$
    $(3.46\times 10^{-2}) -$
    $7.4974\times 10^{-1}$
    $(1.09\times 10^{-2}) \approx$
    $7.0129\times 10^{-1}$
    $(2.16\times 10^{-2}) -$
    $5.6438\times 10^{-1}$
    $(7.52\times 10^{-2}) -$
    $7.5745\times 10^{-1}$
    $(8.38\times 10^{-3}) +$
    $7.6119\times 10^{-1}$
    $(9.23\times 10^{-3}) +$
    10 $9.1417\times 10^{-1}$
    (6.91\times 10^{-2})$
    $8.8646\times 10^{-1}$
    $(5.24\times 10^{-2}) -$
    $8.6481\times 10^{-1}$
    $(5.55\times 10^{-2}) -$
    $7.2445\times 10^{-1}$
    $(3.42\times 10^{-2}) -$
    $7.8885\times 10^{-1}$
    $(2.14\times 10^{-2}) -$
    $9.2002\times 10^{-1}$
    $(3.54\times 10^{-2}) +$
    $9.0227\times 10^{-1}$
    $(3.79\times 10^{-2}) -$
    15 $9.1357\times 10^{-1}$
    $(2.00\times 10^{-2})$
    $8.8219\times 10^{-1}$
    $(7.37\times 10^{-2}) -$
    $7.4786\times 10^{-1}$
    $(6.55\times 10^{-2}) -$
    $6.3510\times 10^{-1}$
    $(1.21\times 10^{-1}) -$
    $1.5569\times 10^{-1}$
    $(5.20\times 10^{-2}) -$
    $8.5783\times 10^{-1}$
    $(6.48\times 10^{-2}) -$
    $8.3130\times 10^{-1}$
    $(6.30\times 10^{-2}) -$
    $+$ / $\approx$ / $-$ 3 / 13 / 20 2 / 8 / 26 0 / 2 / 34 1 / 6 / 29 2 / 1 / 33 8 / 9 / 19
    $+$, $\approx$和$-$分别表示获得的结果与R2-RVEA相比更好, 相似和更差.
    下载: 导出CSV

    表  5  R2-RVEA、NSGA-Ⅲ、RVEA、MOEA/DD、MOMBI-Ⅱ、KnEA和TS-R2EA在WFG1-WFG9上获得的HV值的统计结果(均值和标准差). 最好的结果已突出

    Table  5  The statistical results (mean and standard deviation) of the IGD + values obtained by R2-RVEA, NSGA-Ⅲ, RVEA, MOEA/DD, MOMBI-Ⅱ, KnEA and TS-R2EA on WFG1 to WFG9. The best results are highlighted

    问题 $M$ R2-RVEA NSGA-Ⅲ RVEA MOEA/DD MOMBI-Ⅱ KnEA TS-R2EA
    WFG 1 3 $7.5115\times 10^{-2}$
    $(4.52\times 10^{-2})$
    $8.7381\times 10^{-2}$
    $(5.15\times 10^{-2}) -$
    $6.9562\times 10^{-2}$
    $(6.53\times 10^{-3}) +$
    $1.0065\times 10^{-1}$
    $(6.77\times 10^{-2}) -$
    $1.4254\times 10^{-1}$
    $(8.81\times 10^{-2}) -$
    $5.6061\times 10^{-1}$
    $(2.31\times 10^{-1}) -$
    $7.8279\times 10^{-2}$
    $(5.68\times 10^{-2}) -$
    5 $1.8626\times 10^{-1}$
    $(9.57\times 10^{-3})$
    $2.1152\times 10^{-1}$
    $(4.66\times 10^{-2}) -$
    $2.0426\times 10^{-1}$
    $(6.98\times 10^{-2}) -$
    $1.6063\times 10^{-1}$
    $(5.98\times 10^{-2}) +$
    $5.4411\times 10^{-1}$
    $(2.28\times 10^{-1}) -$
    $1.6029\times 10^{-1}$
    $(3.40\times 10^{-2}) +$
    $2.0587\times 10^{-1}$
    $(3.98\times 10^{-2}) -$
    10 $2.1900\times 10^{-1}$
    $(9.07\times 10^{-3})$
    $2.1486\times 10^{-1}$
    $(3.68\times 10^{-2}) +$
    $1.4214\times 10^{-1}$
    $(6.67\times 10^{-2}) +$
    $1.4874\times 10^{-1}$
    $(4.57\times 10^{-2}) +$
    $3.4832\times 10^{-1}$
    $(2.62\times 10^{-2}) -$
    $2.7665\times 10^{-1}$
    $(2.23\times 10^{-2}) -$
    $1.2162\times 10^{-1}$
    $(2.67\times 10^{-2}) +$
    15 $2.8499\times 10^{-1}$
    $(3.65\times 10^{-2})$
    $4.2663\times 10^{-1}$
    $(1.78\times 10^{-1}) -$
    $3.6853\times 10^{-1}$
    $(2.46\times 10^{-1}) \approx$
    $2.7065\times 10^{-1}$
    $(1.77\times 10^{-1}) \approx$
    $4.1737\times 10^{0}$
    $(5.59\times 10^{0}) -$
    $4.8136\times 10^{-1}$
    $(1.63\times 10^{-1}) -$
    $2.5708\times 10^{-1}$
    $(1.53\times 10^{-1}) \approx$
    WFG 2 3 $8.6719\times 10^{-2}$
    $(3.01\times 10^{-2})$
    $7.6168\times 10^{-2}$
    $(9.03\times 10^{-3}) +$
    $1.0187\times 10^{-1}$
    $(2.00\times 10^{-2}) -$
    $8.9857\times 10^{-2}$
    $(1.30\times 10^{-2}) -$
    $9.6736\times 10^{-2}$
    $(1.76\times 10^{-2}) -$
    $1.0500\times 10^{-1}$
    $(4.39\times 10^{-2}) -$
    $7.6067\times 10^{-2}$
    $(1.80\times 10^{-2}) +$
    5 $1.8338\times 10^{-1}$
    $(1.20\times 10^{-2})$
    $1.9276\times 10^{-1}$
    $(1.34\times 10^{-2}) -$
    $1.8425\times 10^{-1}$
    $(4.47\times 10^{-2}) \approx$
    $2.8035\times 10^{-1}$
    $(2.30\times 10^{-2}) -$
    $2.7826\times 10^{-1}$
    $(7.03\times 10^{-2}) -$
    $1.3904\times 10^{-1}$
    $(2.72\times 10^{-2}) +$
    $2.0231\times 10^{-1}$
    $(4.36\times 10^{-2}) -$
    10 $8.9305\times 10^{-2}$
    $(1.58\times 10^{-2})$
    $4.1897\times 10^{-1}$
    $(1.87\times 10^{-1}) -$
    $2.3948\times 10^{-1}$
    $(6.82\times 10^{-2}) -$
    $3.1155\times 10^{-1}$
    $(2.39\times 10^{-2}) -$
    $1.7810\times 10^{-1}$
    $(2.42\times 10^{-1}) -$
    $1.7637\times 10^{-1}$
    $(3.53\times 10^{-2}) -$
    $1.3011\times 10^{-1}$
    $(5.09\times 10^{-2}) -$
    15 $2.1600\times 10^{-1}$
    $(5.32\times 10^{-1})$
    $7.5861\times 10^{-1}$
    $(1.48\times 10^{-1}) -$
    $5.0074\times 10^{-1}$
    $(1.80\times 10^{-1}) -$
    $4.2257\times 10^{-1}$
    $(1.08\times 10^{-1}) -$
    $4.3099\times 10^{0}$
    $(4.12\times 10^{0}) -$
    $8.7000\times 10^{-1}$
    $(3.55\times 10^{-1}) -$
    $2.8770\times 10^{-1}$
    $(1.22\times 10^{-1}) -$
    WFG 3 3 $4.2032\times 10^{-2}$
    $(5.04\times 10^{-3})$
    $6.1249\times 10^{-2}$
    $(7.76\times 10^{-3}) -$
    $1.5612\times 10^{-1}$
    $(1.82\times 10^{-2}) -$
    $1.6785\times 10^{-1}$
    $(3.80\times 10^{-2}) -$
    $6.4076\times 10^{-2}$
    $(1.72\times 10^{-2}) -$
    $2.7852\times 10^{-2}$
    $(1.39\times 10^{-2}) +$
    $4.8933\times 10^{-2}$
    $(8.39\times 10^{-3}) -$
    5 $2.8475\times 10^{-1}$
    $(1.79\times 10^{-2})$
    $3.5253\times 10^{-1}$
    $(3.53\times 10^{-2}) -$
    $4.6344\times 10^{-1}$
    $(7.97\times 10^{-2}) -$
    $4.7518\times 10^{-1}$
    $(5.46\times 10^{-2}) -$
    $9.7449\times 10^{-1}$
    $(1.26\times 10^{-1}) -$
    $3.5587\times 10^{-1}$
    $(8.30\times 10^{-2}) -$
    $3.6494\times 10^{-1}$
    $(3.92\times 10^{-2}) -$
    10 $6.0947\times 10^{0}$
    $(1.11\times 10^{0})$
    $1.3173\times 10^{0}$
    $(3.71\times 10^{-1}) +$
    $2.7301\times 10^{0}$
    $(1.39\times 10^{-1}) +$
    $2.1179\times 10^{0}$
    $(5.86\times 10^{-2}) +$
    $9.6735\times 10^{0}$
    $(4.62\times 10^{-2}) -$
    $1.2618\times 10^{0}$
    $(1.71\times 10^{-1}) +$
    $1.3693\times 10^{0}$
    $(2.64\times 10^{-1}) +$
    15 $9.9835\times 10^{0}$
    $(3.20\times 10^{0})$
    $2.3745\times 10^{0}$
    $(7.30\times 10^{-1}) +$
    $3.7988\times 10^{0}$
    $(1.10\times 10^{-1}) +$
    $3.6219\times 10^{0}$
    $(2.39\times 10^{-2}) +$
    $1.4650\times 10^{1}$
    $(4.10\times 10^{-2}) -$
    $3.4151\times 10^{0}$
    $(5.06\times 10^{-1}) +$
    $2.9664\times 10^{0}$
    $(3.46\times 10^{-1}) +$
    WFG 4 3 $7.0960\times 10^{-1}$
    $(2.95\times 10^{-4}) +$
    $7.1039\times 10^{-2}$
    $(2.66\times 10^{-4}) \approx$
    $7.3769\times 10^{-2}$
    $(9.55\times 10^{-4}) -$
    $8.7146\times 10^{-2}$
    $(1.36\times 10^{-3}) -$
    $7.3561\times 10^{-2}$
    $(6.52\times 10^{-3}) -$
    $9.2246\times 10^{-2}$
    $(3.64\times 10^{-3}) -$
    $7.1212\times 10^{-2}$
    $(5.81\times 10^{-4}) -$
    5 $3.2825\times 10^{-1}$
    $(5.42\times 10^{-4})$
    $3.2857\times 10^{-1}$
    $(9.93\times 10^{-4}) \approx$
    $3.3068\times 10^{-1}$
    $(1.33\times 10^{-3}) -$
    $3.9675\times 10^{-1}$
    $(9.57\times 10^{-4}) -$
    $3.3731\times 10^{-1}$
    $(1.57\times 10^{-2}) -$
    $3.6449\times 10^{-1}$
    $(6.75\times 10^{-3}) -$
    $3.2845\times 10^{-1}$
    $(3.57\times 10^{-3}) \approx$
    10 $8.7337\times 10^{-1}$
    $(2.69\times 10^{-3})$
    $1.0667\times 10^{0}$
    $(5.15\times 10^{-1}) -$
    $8.9065\times 10^{-1}$
    $(9.51\times 10^{-3}) -$
    $1.1221\times 10^{0}$
    $(8.06\times 10^{-3}) -$
    $2.3431\times 10^{0}$
    $(1.47\times 10^{0}) -$
    $1.0544\times 10^{0}$
    $(8.22\times 10^{-3}) -$
    $8.7977\times 10^{-1}$
    $(8.85\times 10^{-3}) -$
    15 $1.2733\times 10^{0}$
    $(2.41\times 10^{-3})$
    $3.0661\times 10^{0}$
    $(1.63\times 10^{0}) -$
    $1.3006\times 10^{0}$
    $(1.64\times 10^{-1}) \approx$
    $1.6260\times 10^{0}$
    $(6.21\times 10^{-1}) -$
    $1.7552\times 10^{1}$
    $(2.32\times 10^{0}) -$
    $1.3759\times 10^{0}$
    $(2.11\times 10^{-2}) -$
    $1.3775\times 10^{0}$
    $(4.21\times 10^{-1}) -$
    WFG 5 3 $1.2755\times 10^{-1}$
    $(4.48\times 10^{-6})$
    $1.2755\times 10^{-1}$
    $(6.82\times 10^{-6}) \approx$
    $1.2881\times 10^{-1}$
    $(4.47\times 10^{-4}) -$
    $1.4202\times 10^{-1}$
    $(1.02\times 10^{-3}) -$
    $1.3745\times 10^{-1}$
    $(1.38\times 10^{-3}) -$
    $1.9609\times 10^{-1}$
    $(6.08\times 10^{-2}) -$
    $1.2741\times 10^{-1}$
    $(3.43\times 10^{-4}) \approx$
    5 $3.8901\times 10^{-1}$
    $(2.61\times 10^{-5})$
    $3.8902\times 10^{-1}$
    $(4.13\times 10^{-5}) \approx$
    $3.8944\times 10^{-1}$
    $(1.32\times 10^{-4}) -$
    $4.5522\times 10^{-1}$
    $(4.11\times 10^{-4}) -$
    $4.0177\times 10^{-1}$
    $(1.22\times 10^{-2}) -$
    $4.2985\times 10^{-1}$
    $(8.65\times 10^{-3}) -$
    $3.8747\times 10^{-1}$
    $(3.84\times 10^{-3}) \approx$
    10 $9.3301\times 10^{-1}$
    $(9.11\times 10^{-4})$
    $9.3354\times 10^{-1}$
    $(1.06\times 10^{-3}) \approx$
    $9.4055\times 10^{-1}$
    $(4.40\times 10^{-3}) -$
    $1.1723\times 10^{0}$
    $(3.55\times 10^{-3}) -$
    $1.2453\times 10^{0}$
    $(2.17\times 10^{-2}) -$
    $1.0843\times 10^{0}$
    $(2.67\times 10^{-2}) -$
    $9.5531\times 10^{-1}$
    $(5.26\times 10^{-3}) -$
    15 $1.3309\times 10^{0}$
    $(1.47\times 10^{-3})$
    $2.3724\times 10^{0}$
    $(2.25\times 10^{0}) -$
    $1.3259\times 10^{0}$
    $(7.86\times 10^{-3}) +$
    $1.5056\times 10^{0}$
    $(9.76\times 10^{-3}) -$
    $2.3006\times 10^{1}$
    $(2.02\times 10^{0}) -$
    $1.4335\times 10^{0}$
    $(2.73\times 10^{-2}) -$
    $1.3346\times 10^{0}$
    $(2.11\times 10^{-3}) -$
    WFG 6 3 $1.4696\times 10^{-1}$
    $(1.96\times 10^{-2})$
    $1.3922\times 10^{-1}$
    $(2.02\times 10^{-2}) \approx$
    $1.5111\times 10^{-1}$
    $(1.85\times 10^{-2}) \approx$
    $1.6034\times 10^{-1}$
    $(1.84\times 10^{-2}) -$
    $1.4684\times 10^{-1}$
    $(2.31\times 10^{-2}) \approx$
    $1.9074\times 10^{-1}$
    $(1.64\times 10^{-2}) -$
    $1.4918\times 10^{-1}$
    $(2.14\times 10^{-2}) \approx$
    5 $4.1833\times 10^{-1}$
    $(2.17\times 10^{-2})$
    $4.1223\times 10^{-1}$
    $(2.09\times 10^{-2}) \approx$
    $4.1516\times 10^{-1}$
    $(2.48\times 10^{-2}) \approx$
    $4.8181\times 10^{-1}$
    $(2.89\times 10^{-2}) -$
    $4.2618\times 10^{-1}$
    $(5.46\times 10^{-2}) \approx$
    $5.0750\times 10^{-1}$
    $(2.91\times 10^{-2}) -$
    $4.0415\times 10^{-1}$
    $(2.16\times 10^{-2}) \approx$
    10 $9.5617\times 10^{-1}$
    $(1.65\times 10^{-2})$
    $9.6279\times 10^{-1}$
    $(2.14\times 10^{-2}) \approx$
    $9.9145\times 10^{-1}$
    $(3.18\times 10^{-2}) -$
    $1.2157\times 10^{0}$
    $(2.50\times 10^{-2}) -$
    $9.5786\times 10^{-1}$
    $(3.29\times 10^{-2}) \approx$
    $1.1230\times 10^{0}$
    $(3.04\times 10^{-2}) -$
    $9.7574\times 10^{-1}$
    $(2.37\times 10^{-2}) -$
    15 $1.3522\times 10^{0}$
    $(1.58\times 10^{-2})$
    $1.6632\times 10^{0}$
    $(1.10\times 10^{-1}) -$
    $1.4286\times 10^{0}$
    $(4.27\times 10^{-2}) -$
    $1.5291\times 10^{0}$
    $(2.96\times 10^{-2}) -$
    $1.5286\times 10^{1}$
    $(3.49\times 10^{0}) -$
    $1.5321\times 10^{0}$
    $(5.28\times 10^{-2}) -$
    $1.3721\times 10^{0}$
    $(3.17\times 10^{-2}) -$
    WFG 7 3 $7.1361\times 10^{-2}$
    $(3.23\times 10^{-4})$
    $7.1371\times 10^{-2}$
    $(3.07\times 10^{-4}) \approx$
    $7.3630\times 10^{-2}$
    $(5.88\times 10^{-4}) -$
    $8.9150\times 10^{-2}$
    $(1.87\times 10^{-3}) -$
    $7.3845\times 10^{-2}$
    $(8.23\times 10^{-3}) -$
    $3.2485\times 10^{-1}$
    $(1.88\times 10^{-2}) -$
    $7.0651\times 10^{-2}$
    $(7.82\times 10^{-5}) +$
    5 $3.3002\times 10^{-1}$
    $(6.74\times 10^{-4})$
    $3.3105\times 10^{-1}$
    $(1.15\times 10^{-3}) -$
    $3.3337\times 10^{-1}$
    $(1.46\times 10^{-3}) -$
    $4.0782\times 10^{-1}$
    $(9.79\times 10^{-3}) -$
    $3.2920\times 10^{-1}$
    $(3.76\times 10^{-3}) +$
    $3.8174\times 10^{-1}$
    $(1.44\times 10^{-2})$
    $3.2722\times 10^{-1}$
    $(4.37\times 10^{-4}) +$
    10 $8.8858\times 10^{-1}$
    $(4.99\times 10^{-3})$
    $9.3332\times 10^{-1}$
    $(1.58\times 10^{-1}) \approx$
    $8.9287\times 10^{-1}$
    $(4.96\times 10^{-3}) -$
    $1.1039\times 10^{0}$
    $(1.27\times 10^{-2}) -$
    $9.8755\times 10^{-1}$
    $(3.48\times 10^{-1}) -$
    $9.6895\times 10^{-1}$
    $(1.47\times 10^{-2}) -$
    $8.9890\times 10^{-1}$
    $(1.10\times 10^{-2}) -$
    15 $1.2798\times 10^{0}$
    $(7.32\times 10^{-3})$
    $2.6475\times 10^{0}$
    $(7.87\times 10^{-1}) -$
    $2.6579\times 10^{0}$
    $(6.81\times 10^{-1}) -$
    $1.6730\times 10^{0}$
    $(5.69\times 10^{-1}) -$
    $1.3576\times 10^{0}$
    $(2.40\times 10^{0}) -$
    $1.5766\times 10^{0}$
    $(5.83\times 10^{-1}) -$
    $1.6838\times 10^{0}$
    $(6.24\times 10^{-1}) -$
    WFG 8 3 $2.0276\times 10^{-1}$
    $(2.38\times 10^{-3})$
    $2.0043\times 10^{-1}$
    $(5.27\times 10^{-3}) +$
    $2.1262\times 10^{-1}$
    $(2.76\times 10^{-3}) -$
    $2.2068\times 10^{-1}$
    $(8.51\times 10^{-3}) -$
    $2.2094\times 10^{-1}$
    $(3.61\times 10^{-3}) -$
    $2.2380\times 10^{-1}$
    $(4.90\times 10^{-3}) -$
    $1.9590\times 10^{-1}$
    $(3.10\times 10^{-3}) +$
    5 $6.0819\times 10^{-1}$
    $(1.75\times 10^{-3})$
    $6.0468\times 10^{-1}$
    $(1.31\times 10^{-3}) +$
    $6.1524\times 10^{-1}$
    $(9.59\times 10^{-3}) -$
    $6.4945\times 10^{-1}$
    $(1.99\times 10^{-2}) -$
    $1.1632\times 10^{0}$
    $(3.44\times 10^{-2}) -$
    $6.9589\times 10^{-1}$
    $(2.50\times 10^{-2}) -$
    $6.1227\times 10^{-1}$
    $(2.15\times 10^{-3}) -$
    10 $1.7814\times 10^{0}$
    (2.24\times 10^{-1})$
    $3.1854\times 10^{0}$
    $(1.15\times 10^{0}) -$
    $1.2981\times 10^{0}$
    $(2.89\times 10^{-1}) +$
    $1.3753\times 10^{0}$
    $(1.37\times 10^{-1}) +$
    $3.7183\times 10^{0}$
    $(1.07\times 10^{0}) -$
    $1.4339\times 10^{0}$
    $(2.03\times 10^{-1}) +$
    $1.5086\times 10^{0}$
    $(3.02\times 10^{-1}) \approx$
    15 $4.1237\times 10^{0}$
    $(1.62\times 10^{0})$
    $8.8664\times 10^{0}$
    $(1.08\times 10^{0}) -$
    $2.7442\times 10^{0}$
    $(1.99\times 10^{0}) +$
    $3.6008\times 10^{0}$
    $(1.27\times 10^{0}) \approx$
    $1.6919\times 10^{1}$
    $(2.15\times 10^{0}) -$
    $2.2133\times 10^{0}$
    $(6.49\times 10^{-1}) +$
    $2.3419\times 10^{0}$
    $(1.23\times 10^{0}) +$
    WFG 9 3 $9.1371\times 10^{-2}$
    $(8.31\times 10^{-3})$
    $9.8060\times 10^{-2}$
    $(7.55\times 10^{-3}) -$
    $9.4218\times 10^{-2}$
    $(5.27\times 10^{-3}) -$
    $1.1083\times 10^{-1}$
    $(7.33\times 10^{-3}) -$
    $1.2051\times 10^{-1}$
    $(7.64\times 10^{-3}) -$
    $4.1313\times 10^{-1}$
    $(5.50\times 10^{-2}) -$
    $8.5058\times 10^{-2}$
    $(3.66\times 10^{-3}) +$
    5 $4.0014\times 10^{-1}$
    $(3.90\times 10^{-2})$
    $4.1637\times 10^{-1}$
    $(4.75\times 10^{-2}) -$
    $3.7828\times 10^{-1}$
    $(1.29\times 10^{-2}) +$
    $4.8038\times 10^{-1}$
    $(3.90\times 10^{-2}) -$
    $7.4087\times 10^{-1}$
    $(1.12\times 10^{-1}) -$
    $3.8673\times 10^{-1}$
    $(1.23\times 10^{-2}) \approx$
    $3.6848\times 10^{-1}$
    $(1.24\times 10^{-2}) +$
    10 $1.0158\times 10^{0}$
    (2.47\times 10^{-2})$
    $1.4614\times 10^{0}$
    $(7.52\times 10^{-1}) -$
    $9.7817\times 10^{-1}$
    $(3.09\times 10^{-2}) +$
    $1.2487\times 10^{0}$
    $(6.41\times 10^{-2}) -$
    $1.8261\times 10^{0}$
    $(4.88\times 10^{-1}) -$
    $1.0663\times 10^{0}$
    $(2.44\times 10^{-2}) -$
    $1.0275\times 10^{0}$
    $(6.41\times 10^{-2}) \approx$
    15 $1.6670\times 10^{0}$
    (1.67\times 10^{-1})$
    $5.6055\times 10^{0}$
    $(1.89\times 10^{0}) -$
    $1.5770\times 10^{0}$
    $(3.10\times 10^{-1}) +$
    $2.0273\times 10^{0}$
    $(6.11\times 10^{-1}) -$
    $2.4264\times 10^{1}$
    $(1.08\times 10^{0}) -$
    $1.7242\times 10^{0}$
    $(3.23\times 10^{-1}) \approx$
    $1.6462\times 10^{0}$
    $(3.71\times 10^{-1}) \approx$
    $+$ / $\approx$ / $-$ 6 / 10 / 20 10 / 5 / 21 5 / 2 / 29 1 / 3 / 32 7 / 2 / 27 10 / 9 / 17
    +, $\approx$和$-$分别表示获得的结果与R2-RVEA相比更好, 相似和更差.
    下载: 导出CSV

    表  6  R2-RVEA与其他算法的测试对比

    Table  6  Comparison between R2-RVEA and other algorithms

    对比算法 对比指标
    HV IGD+
    NSGA-Ⅲ 6  20  38 11  17  36
    RVEA 10  17  37 18  13  33
    MOEA/DD 9  11  44 16  9  39
    MOMBI-Ⅱ 6  11  47 4  11  49
    KnEA 4  1  59 13  4  47
    TS-R2EA 17  16  31 21  15  28
    +  $\approx$  $-$ +  $\approx$  $-$
    下载: 导出CSV
  • [1] Deb K. Multi-Objective Optimization using Evolutionary Algorithms. New York: John Wiley and Sons, 2001. 13-49
    [2] Zhou A M, Qu B Y, Li H, Zhao S Z, Suganthan P N, Zhang Q F. Multiobjective evolutionary algorithms: A survey of the state of the art. Swarm and Evolutionary Computation, 2011, 1(1): 32-49 doi: 10.1016/j.swevo.2011.03.001
    [3] Zhang J W, Xing L N. A survey of multiobjective evolutionary algorithms. In: Proceedings of the 2017 IEEE International Conference on Computational Science and Engineering (CSE) and IEEE International Conference on Embedded and Ubiquitous Computing (EUC). Guangzhou, China: IEEE, 2017. 93-100
    [4] Fleming P J, Purshouse R C, Lygoe R J. Many-objective optimization: An engineering design perspective. In: Proceedings of the 3rd International Conference on Evolutionary Multi-Criterion Optimization. Guanajuato, Mexico: Springer, 2005. 14-32
    [5] Deb K, Pratap A, Agarwal S, Meyarivan T. A fast and elitist multiobjective genetic algorithm: NSGA-Ⅱ. IEEE Transactions on Evolutionary Computation, 2002, 6(2): 182-197 doi: 10.1109/4235.996017
    [6] Zitzler E, Laumanns M, Thiele L. SPEA2: Improving the Strength Pareto Evolutionary Algorithm, Technical Report 103, Computer Engineering and Communication Networks Lab (TIK), Swiss Federal Institute of Technology (ETH), Switzerland, 2001.
    [7] Batista L S, Campelo F, Guimarães F G, Ramírez J A. Pareto cone varepsilon-dominance: Improving convergence and diversity in multiobjective evolutionary algorithms. In: Proceedings of the 6th International Conference on Evolutionary Multi-Criterion Optimization. Ouro Preto, Brazil: Springer, 2011. 76-90
    [8] Zou X F, Chen Y, Liu M Z, Kang L S. A new evolutionary algorithm for solving many-objective optimization problems. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 2008, 38(5): 1402-1412 doi: 10.1109/TSMCB.2008.926329
    [9] He Z N, Yen G G, Zhang J. Fuzzy-based Pareto optimality for many-objective evolutionary algorithms. IEEE Transactions on Evolutionary Computation, 2014, 18(2): 269-285 doi: 10.1109/TEVC.2013.2258025
    [10] Di Pierro F, Khu S T, Savic D A. An investigation on preference order ranking scheme for multiobjective evolutionary optimization. IEEE Transactions on Evolutionary Computation, 2007, 11(1): 17-45 doi: 10.1109/TEVC.2006.876362
    [11] Yang S X, Li M Q, Liu X H, Zheng J H. A grid-based evolutionary algorithm for many-objective optimization. IEEE Transactions on Evolutionary Computation, 2013, 17(5): 721-736 doi: 10.1109/TEVC.2012.2227145
    [12] Zhang X Y, Tian Y, Jin Y C. A knee point-driven evolutionary algorithm for many-objective optimization. IEEE Transactions on Evolutionary Computation, 2015, 19(6): 761-776 doi: 10.1109/TEVC.2014.2378512
    [13] Zhang Q F, Li H. MOEA/D: A multiobjective evolutionary algorithm based on decomposition. IEEE Transactions on Evolutionary Computation, 2007, 11(6): 712-731 doi: 10.1109/TEVC.2007.892759
    [14] Liu H L, Gu F Q, Zhang Q F. Decomposition of a multiobjective optimization problem into a number of simple multiobjective subproblems. IEEE Transactions on Evolutionary Computation, 2014, 18(3): 450-455 doi: 10.1109/TEVC.2013.2281533
    [15] Chen L, Liu H L, Lu C, Cheung Y M, Zhang J. A novel evolutionary multi-objective algorithm based on S metric selection and M2M population decomposition. In: Proceedings of the 18th Asia Pacific Symposium on Intelligent and Evolutionary Systems - Volume 2. Bangkok, Thailand: Springer, 2015. 441-452
    [16] Cheng R, Jin Y C, Olhofer M, Sendhoff B. A reference vector guided evolutionary algorithm for many-objective optimization. IEEE Transactions on Evolutionary Computation, 2016, 20(5): 773-791 doi: 10.1109/TEVC.2016.2519378
    [17] Jiang S Y, Yang S X. A strength Pareto evolutionary algorithm based on reference direction for multiobjective and many-objective optimization. IEEE Transactions on Evolutionary Computation, 2017, 21(3): 329-346 doi: 10.1109/TEVC.2016.2592479
    [18] Deb K, Jain H. An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, Part Ⅰ: Solving problems with box constraints. IEEE Transactions on Evolutionary Computation, 2014, 18(4): 577-601 doi: 10.1109/TEVC.2013.2281535
    [19] Zitzler E, Künzli S. Indicator-based selection in multiobjective search. In: Proceedings of the 8th International Conference on Parallel Problem Solving from Nature. Birmingham, United Kingdom: Springer, 2004. 832-842
    [20] Bader J, Zitzler E. HypE: An algorithm for fast hypervolume-based many-objective optimization. Evolutionary Computation, 2011, 19(1): 45-76 doi: 10.1162/EVCO_a_00009
    [21] Beume N, Naujoks B, Emmerich M. SMS-EMOA: Multiobjective selection based on dominated hypervolume. European Journal of Operational Research, 2007, 181(3): 1653-1669 doi: 10.1016/j.ejor.2006.08.008
    [22] Li M Q, Yang S X, Liu X H. Pareto or non-Pareto: Bi-criterion evolution in multiobjective optimization. IEEE Transactions on Evolutionary Computation, 2016, 20(5): 645-665 doi: 10.1109/TEVC.2015.2504730
    [23] Van Veldhuizen D A, Lamont B G. Multiobjective evolutionary algorithms: Analyzing the state-of-the-art. Evolutionary Computation, 2000, 8(2): 125-147 doi: 10.1162/106365600568158
    [24] Wang H D, Jin Y C, Yao X. Diversity assessment in many-objective optimization. IEEE Transactions on Cybernetics, 2017, 47(6): 1510-1522 doi: 10.1109/TCYB.2016.2550502
    [25] Zhou A M, Jin Y C, Zhang Q F, Sendhoff B, Tsang E. Combining model-based and genetics-based offspring generation for multi-objective optimization using a convergence criterion. In: Proceedings of the 2006 IEEE International Conference on Evolutionary Computation. Vancouver, BC, Canada: IEEE, 2006. 892-899
    [26] While L, Hingston P, Barone L, Huband S. A faster algorithm for calculating hypervolume. IEEE Transactions on Evolutionary Computation, 2006, 10(1): 29-38 doi: 10.1109/TEVC.2005.851275
    [27] Brockhoff D, Wagner T, Trautmann H. On the properties of the R2 indicator. In: Proceedings of the 14th Annual Conference on Genetic and Evolutionary Computation. Philadelphia, Pennsylvania, USA: ACM, 2012. 465-472
    [28] Tian Y, Zhang X Y, Cheng R, Jin Y C. A multi-objective evolutionary algorithm based on an enhanced inverted generational distance metric. In: Proceedings of the 2016 IEEE Congress on Evolutionary Computation (CEC). Vancouver, BC, Canada: IEEE, 2016. 5222-5229
    [29] Tian Y, Cheng R, Zhang X Y, Cheng F, Jin Y C. An indicator-based multiobjective evolutionary algorithm with reference point adaptation for better versatility. IEEE Transactions on Evolutionary Computation, 2018, 22(4): 609-622 doi: 10.1109/TEVC.2017.2749619
    [30] Sun Y N, Yen G G, Yi Z. IGD indicator-based evolutionary algorithm for many-objective optimization problems. IEEE Transactions on Evolutionary Computation, 2019, 23(2): 173-187 doi: 10.1109/TEVC.2018.2791283
    [31] Phan D H, Suzuki J. R2-IBEA: R2 indicator based evolutionary algorithm for multiobjective optimization. In: Proceedings of the 2013 IEEE Congress on Evolutionary Computation. Cancun, Mexico: IEEE, 2013. 1836-1845
    [32] Trautmann H, Wagner T, Brockhoff D. R2-EMOA: Focused multiobjective search using R2-indicator-based selection. In: Proceedings of the 7th International Conference on Learning and Intelligent Optimization. Catania, Italy: Springer, 2013. 70-74
    [33] Gómez R H, Coello C A C. Improved metaheuristic based on the R2 indicator for many-objective optimization. In: Proceedings of the 2015 Annual Conference on Genetic and Evolutionary Computation. Madrid, Spain: ACM, 2015. 679-686
    [34] Li F, Cheng R, Liu J C, Jin Y C. A two-stage R2 indicator based evolutionary algorithm for many-objective optimization. Applied Soft Computing, 2018, 67: 245-260 doi: 10.1016/j.asoc.2018.02.048
    [35] Das I, Dennis J E. Normal-boundary intersection: A new method for generating the Pareto surface in nonlinear multicriteria optimization problems. SIAM Journal on Optimization, 1998, 8(3): 631-657 doi: 10.1137/S1052623496307510
    [36] Li K, Deb K, Zhang Q F, Kwong S. An evolutionary many-objective optimization algorithm based on dominance and decomposition. IEEE Transactions on Evolutionary Computation, 2015, 19(5): 694-716 doi: 10.1109/TEVC.2014.2373386
    [37] Deb K, Thiele L, Laumanns M, Zitzler E. Scalable test problems for evolutionary multiobjective optimization. Evolutionary Multiobjective Optimization. London: Springer, 2005. 105-145
    [38] Huband S, Barone L, While L, Hingston P. A scalable multi-objective test problem toolkit. In: Proceedings of the 3rd International Conference on Evolutionary Multi-Criterion Optimization. Guanajuato, Mexico: Springer, 2005. 280-295
    [39] Tian Y, Cheng R, Zhang X Y, Jin Y C. PlatEMO: A MATLAB platform for evolutionary multi-objective optimization[Educational Forum]. IEEE Computational Intelligence Magazine, 2017, 12(4): 73-87 doi: 10.1109/MCI.2017.2742868
    [40] Deb K, Agrawal R B. Simulated binary crossover for continuous search space. Complex Systems, 1995, 9(2): 115-148 http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=0A9E92AEA8531E5C5E5F48D5FA440D42?doi=10.1.1.26.8485&rep=rep1&type=pdf
    [41] Deb K, Goyal M. A combined genetic adaptive search (GeneAS) for engineering design. Computer Science and Informatics, 1996, 26(4): 30-45 http://www.researchgate.net/publication/2335418_A_Combined_Genetic_Adaptive_Search_GeneAS_for_Engineering
    [42] Ishibuchi H, Masuda H, Tanigaki Y, Nojima Y. Modified distance calculation in generational distance and inverted generational distance. In: Proceedings of the 8th International Conference on Evolutionary Multi-Criterion Optimization. Guimarães, Portugal: Springer, 2015. 110-125
  • 加载中
图(6) / 表(6)
计量
  • 文章访问数:  830
  • HTML全文浏览量:  441
  • PDF下载量:  164
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-11-01
  • 录用日期:  2019-03-08
  • 刊出日期:  2021-11-18

目录

    /

    返回文章
    返回