2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

PF-FICOTA-SENSE:一种MRI快速重构方法

李建武 康杨 周金鹏

李建武, 康杨, 周金鹏. PF-FICOTA-SENSE:一种MRI快速重构方法. 自动化学报, 2020, 46(5): 897-908. doi: 10.16383/j.aas.c180706
引用本文: 李建武, 康杨, 周金鹏. PF-FICOTA-SENSE:一种MRI快速重构方法. 自动化学报, 2020, 46(5): 897-908. doi: 10.16383/j.aas.c180706
LI Jian-Wu, KANG Yang, ZHOU Jin-Peng. PF-FICOTA-SENSE: An MRI Fast Reconstruction Method. ACTA AUTOMATICA SINICA, 2020, 46(5): 897-908. doi: 10.16383/j.aas.c180706
Citation: LI Jian-Wu, KANG Yang, ZHOU Jin-Peng. PF-FICOTA-SENSE: An MRI Fast Reconstruction Method. ACTA AUTOMATICA SINICA, 2020, 46(5): 897-908. doi: 10.16383/j.aas.c180706

PF-FICOTA-SENSE:一种MRI快速重构方法

doi: 10.16383/j.aas.c180706
基金项目: 

国家自然科学基金 61271374

详细信息
    作者简介:

    康杨  北京理工大学计算机学院硕士研究生.主要研究方向为医学图像处理与机器智能. E-mail: 1045352075@qq.com

    周金鹏  北京理工大学计算机学院硕士研究生.主要研究方向为医学图像处理与机器智能.E-mail: 2120121177@bit.edu.cn

    通讯作者:

    李建武  博士, 北京理工大学计算机学院副教授.主要研究方向为计算机视觉, 图像处理, 超分辨率图像重建技术.本文通信作者. E-mail: ljw@bit.edu.cn

PF-FICOTA-SENSE: An MRI Fast Reconstruction Method

Funds: 

National Natural Science Foundation of China 61271374

More Information
    Author Bio:

    KANG Yang  Master student at the School of Computer Science and Technology, Beijing Institute of Technology. His research interest covers medical image processing and machine intelligence

    ZHOU Jin-Peng  Master student at the School of Computer Science and Technology, Beijing Institute of Technology. His research interest covers medical image processing and machine intelligence

    Corresponding author: LI Jian-Wu  Ph. D., associate professor at the School of Computer Science and Technology, Beijing Institute of Technology. His research interest covers computer vision, image processing, and super-resolution image reconstruction. Corresponding author of this paper
  • 摘要: 如何实现快速磁共振成像(Magnetic resonance imaging, MRI)是MRI医学图像技术发展和应用的关键, 现有的快速MRI成像技术在成像速度及成像质量方面仍存在很大的提升空间.本文基于Contourlet变换, 对磁共振图像进行稀疏表示, 并结合传统PF-CS-SENSE框架, 提出一种基于Contourlet变换的组合MRI重构方法, 即PF-FICOTA-SENSE.考虑到组合MRI采样模式、低频数据的对称性以及Contourlet能更好地拟合曲线轮廓等因素, 进一步提出一种快速组合MRI方法, 该方法通过将低频部分重建由FICOTA重建替换为直接填零的傅里叶重建, 来实现快速重建.对比实验表明, 无论在MRI重构速度还是重构质量方面, 本文算法均能取得更好的性能.
    Recommended by Associate Editor SANG Nong
    1)  本文责任编委 桑农
  • 图  1  PFPI流程

    Fig.  1  PFPI process

    图  2  CS-SENSE流程

    Fig.  2  CS-SENSE process

    图  3  半傅里叶成像Homodyne算法流程

    Fig.  3  Semi-Fourier imaging homodyne algorithm process

    图  4  并行成像SENSE算法

    Fig.  4  Parallel imaging SENSE algorithm

    图  5  PF-CS-SENSE流程

    Fig.  5  PF-CS-SENSE process

    图  6  PF-FICOTA-SENSE流程

    Fig.  6  PF-FICOTA-SENSE process

    图  7  变密度随机采样

    Fig.  7  Variable density random sampling

    图  8  快速组合MRI变密度随机采样

    Fig.  8  Fast combined MRI variable density random sampling

    图  9  基于快速组合MRI框架的PF-FICOTA-SENSE

    Fig.  9  PF-FICOTA-SENSE based on fast combined MRI framework

    图  10  三种方法的实验结果

    Fig.  10  Experimental results from three different methods

    图  11  三种方法的快速组合MRI实验结果$ (R_{Total}=6)$

    Fig.  11  Rapid combined MRI results $ (R_{Total}=6)$ of three different methods

    表  1  SFLCT不同配置下的冗余度数据

    Table  1  SFLCT redundancy data in different configurations

    $d$ $\omega_{p, 0}$ $\omega_{s, 0}$ $\omega_{p, 1}$ $\omega_{s, 1}$ 冗余度
    1 $\frac{\pi}{3}$ $\frac{2\pi}{3}$ $\frac{\pi}{6}$ $\frac{\pi}{3}$ 2.33
    1.5 $\frac{5\pi}{14}$ $\frac{9\pi}{14}$ $\frac{19\pi}{72}$ $\frac{35\pi}{72}$ 1.60
    2 $\frac{4\pi}{21}$ $\frac{10\pi}{21}$ $\frac{4\pi}{21}$ $\frac{10\pi}{21}$ 1.33
    下载: 导出CSV

    表  2  三种方法的重建性能比较(ROI)

    Table  2  Reconstruction performance comparison (ROI) on three different methods

    PF-FICOTA-SENSE PF-DTFCSA-SENSE PF-CS-SENSE
    稀疏表示 SFLCT Complex DT Daubechies-4
    重建时间(s) $\sim$150 $\sim$120 $\sim$150
    $R_{Total} = 6$
    $R_{CS} \approx 1.8$
    CC 0.9825 0.9816 0.9779
    PSNR 75.1207 74.7429 74.1084
    NMSE 0.0033 0.0036 0.0041
    $R_{Total} = 10$
    $R_{CS} \approx 3.2$
    CC 0.9717 0.9724 0.9557
    PSNR 73.0758 73.0504 71.1287
    NMSE 0.0052 0.0053 0.0082
    下载: 导出CSV

    表  3  三种方法的快速组合MRI重建性能比较(ROI)

    Table  3  Reconstruction performance comparison (ROI) on fast combined MRI of three different methods

    PF-FICOTA-SENSE PF-DTFCSA-SENSE PF-CS-SENSE
    组合框架 原型 快速 原型 快速 原型 快速
    重建时间(s) $\sim$150 $\sim$75 $\sim$120 $\sim$60 $\sim$150 $\sim$75
    $R_{Total} = 6$
    $R_{CS} \approx 1.8$
    CC 0.9825 0.9824 0.9816 0.9815 0.9779 0.9779
    PSNR 75.1207 75.1079 74.7429 74.7293 74.1084 74.1021
    NMSE 0.0033 0.0033 0.0036 0.0036 0.0041 0.0041
    $R_{Total} = 10$
    $R_{CS} \approx 3.2$
    CC 0.9717 0.9717 0.9724 0.9723 0.9557 0.9557
    PSNR 73.0758 73.0670 73.0504 73.0384 71.1287 71.1277
    NMSE 0.0052 0.0052 0.0053 0.0053 0.0082 0.0082
    下载: 导出CSV

    表  4  三种方法的快速组合MRI峰值信噪比(PSNR)损失率(ROI)

    Table  4  Peak signal-to-noise ratio (PSNR) loss rate (ROI) on fast combined MRI of three different methods

    PSNR损失率($\times{10}^{-4}$) PF-FICOTA-SENSE PF-DTFCSA-SENSE PF-CS-SENSE
    $R_{Total} = 6$
    $R_{CS} \approx 1.8$
    1.7039 1.8199 0.8501
    $R_{Total} = 10$
    $R_{CS} \approx 3.2$
    1.2041 1.6427 0.1406
    下载: 导出CSV
  • [1] Scherzinger A L, Hendee W R. Basic principles of magnetic resonance imaging-an update. Western Journal of Medicine, 1985, 143(6): 782-792 http://d.old.wanfangdata.com.cn/OAPaper/oai_pubmedcentral.nih.gov_1306488
    [2] Rodríguez A O. Principles of magnetic resonance imaging. Revista Mexicana de Fisica, 2004, 50(3): 272-286 http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_02f6967cefd576b25e0eb9635a942d51
    [3] 翁卓, 谢国喜, 刘新, 熊承义, 郑海荣, 邱本胜.基于K空间加速采集的磁共振成像技术.中国生物医学工程学报, 2010, 29(5): 785-792 doi: 10.3969/j.issn.0258-8021.2010.05.023

    Weng Zhuo, Xie Guo-Xi, Liu Xin, Xiong Cheng-Yi, Zheng Hai-Rong, Qiu Ben-Sheng. Development of fast magnetic resonance imaging techniques based on K-space accelerated collection. Chinese Journal of Biomedical Engineering, 2010, 29(5): 785-792 doi: 10.3969/j.issn.0258-8021.2010.05.023
    [4] Twieg D B. The K-trajectory formulation of the NMR imaging process with applications in analysis and synthesis of imaging methods. Medical Physics, 1983, 10(5): 610-621 doi: 10.1118/1.595331
    [5] McGibney G, Smith M R, Nichols S T, Crawley A. Quantitative evaluation of several partial Fourier reconstruction algorithms used in MRI. Magnetic Resonance in Medicine, 1993, 30(1): 51-59 doi: 10.1002/mrm.1910300109
    [6] Pruessmann K P, Weiger M, Scheidegger M B, Boesiger P. SENSE: sensitivity encoding for fast MRI. Magnetic Resonance in Medicine, 1999, 42(5): 952-962 doi: 10.1002/(SICI)1522-2594(199911)42:5<952::AID-MRM16>3.0.CO;2-S
    [7] Noll D C, Nishimura D G, Macovski A. Homodyne detection in magnetic resonance imaging. IEEE Transactions on Medical Imaging, 1991, 10(2): 154-163 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=1ef5322f42b7461f3ec54c2d442df2f0
    [8] Haacke E M, Lindskogj E D, Lin W. A fast, iterative, partial-fourier technique capable of local phase recovery. Journal of Magnetic Resonance, 1991, 92(1): 126-145 http://cn.bing.com/academic/profile?id=4459f8b50b0db6b11a25d9d2e32c8b1f&encoded=0&v=paper_preview&mkt=zh-cn
    [9] Griswold M A, Jakob P M, Heidemann R M, Nittka M, Jellus V, Wang J M, et al. Generalized autocalibrating partially parallel acquisitions (GRAPPA). Magnetic Resonance in Medicine, 2002, 47(6): 1202-1210 doi: 10.1002/mrm.10171
    [10] Donoho D L. Compressed sensing. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306 http://d.old.wanfangdata.com.cn/Periodical/hwyhmb200904014
    [11] Lustig M, Donoho D L, Santos J M, Pauly J M. Compressed sensing MRI. IEEE Signal Processing Magazine, 2008, 25(2): 72-82 doi: 10.1109/MSP.2007.914728
    [12] Grossmann A, Morlet J. Decomposition of hardy functions into square integrable wavelets of constant shape. SIAM Journal on Mathematical Analysis, 1984, 15(4): 723-736 doi: 10.1137-0515056/
    [13] Starck J L, Candes E J, Donoho D L. The curvelet transform for image denoising. IEEE Transactions on Image Processing, 2002, 11(6): 670-684 doi: 10.1109/TIP.2002.1014998
    [14] Do M N, Vetterli M. The contourlet transform: an efficient directional multiresolution image representation. IEEE Transactions on Image Processing, 2005, 14(12): 2091-2106 doi: 10.1109/TIP.2005.859376
    [15] Lu Y, Do M N. A new contourlet transform with sharp frequency localization. In: Proceedings of the 2006 IEEE International Conference on Image Processing. Atlanta, GA, USA: IEEE, 2006. 1629-1632
    [16] Meng Y L, Lin W, Li C L, Chen S C. Fast two-snapshot structured illumination for temporal focusing microscopy with enhanced axial resolution. Optics Express, 2017, 25(19): 23109 http://cn.bing.com/academic/profile?id=9987168816e08b02571442a0d6e6fe69&encoded=0&v=paper_preview&mkt=zh-cn
    [17] Mathew R S, Paul J S. Sparsity promoting adaptive regularization for compressed sensing parallel MRI. IEEE Transactions on Computational Imaging, 2018, 4(1): 147-159 doi: 10.1109/TCI.2017.2787911
    [18] Chen Y M, Ye X J, Huang F. A novel method and fast algorithm for MR image reconstruction with significantly under-sampled data. Inverse Problems & Imaging, 2017, 4(2): 223-240 https://people.clas.ufl.edu/yun/files/article-7.pdf
    [19] 董家林, 洪明坚, 张海标, 葛永新.联合相邻帧预测的心脏磁共振电影成像方法.自动化学报, 2018, 44(3): 490-505 doi: 10.16383/j.aas.2018.c160420

    Dong Jia-Lin, Hong Ming-Jian, Zhang Hai-Biao, Ge Yong-Xin. Joint adjacent-frame prediction for cardiac cine MR imaging. Acta Automatica Sinica, 2018, 44(3): 490-505 doi: 10.16383/j.aas.2018.c160420
    [20] 熊娇娇, 卢红阳, 张明辉, 刘且根.基于梯度域的卷积稀疏编码磁共振成像重建.自动化学报, 2017, 43(10): 1841-1849 doi: 10.16383/j.aas.2017.e160135

    Xiong Jiao-Jiao, Lu Hong-Yang, Zhang Ming-Hui, Liu Qie-Gen. Convolutional sparse coding in gradient domain for MRI reconstruction. Acta Automatica Sinica, 2017, 43(10): 1841-1849 doi: 10.16383/j.aas.2017.e160135
    [21] Quan T M, Nguyen-Quc T, Jeong W K. Compressed sensing MRI reconstruction using a generative adversarial network with a cyclic loss. IEEE Transactions on Medical Imaging, 2018, 37(6): 1488-1497 doi: 10.1109/TMI.2018.2820120
    [22] Yang G, Yu S M, Dong H, Slabaugh G, Dragotti P L, Ye X J, et al. DAGAN: deep de-aliasing generative adversarial networks for fast compressed sensing MRI reconstruction. IEEE Transactions on Medical Imaging, 2018, 37(6): 1310-1321 doi: 10.1109/TMI.2017.2785879
    [23] Kim D, Jung S, Park H W. DRF-GRAPPA: a parallel MRI Method with a direct reconstruction filter. Journal of the Korean Physical Society, 2018, 73(1): 130-137 doi: 10.3938/jkps.73.130
    [24] Wang S S, Su Z H, Ying L, Peng X, Zhu S, Liang F, et al. Accelerating magnetic resonance imaging via deep learning. In: Proceedings of the IEEE 13th International Symposium on Biomedical Imaging. Prague, Czech Republic: IEEE, 2016. 514-517
    [25] Schlemper J, Caballero J, Hajnal J V, Price A, Rueckert D. A deep cascade of convolutional neural networks for MR image reconstruction. International Conference on Information Processing in Medical Imaging. Cham: Springer, 2017. 647-658
    [26] Hyun C M, Kim H P, Lee S M, Lee S, Seo J K. Deep learning for undersampled MRI reconstruction. Physics in Medicine and Biology, 2018, 63(13): 135007 doi: 10.1088/1361-6560/aac71a
    [27] King K F, Angelos L. SENSE with partial Fourier homodyne reconstruction. In: Proceedings of the 8th Annual Meeting of ISMRM. Denver, 2000. 153
    [28] 黄鑫, 陈武凡, 冯衍秋.基于鲁棒估计的并行磁共振成像中部分数据重建算法.计算机学报, 2011, 34(9): 1732-1738 http://d.old.wanfangdata.com.cn/Periodical/jsjxb201109019

    Huang Xin, Chen Wu-Fan, Feng Yan-Qiu. An effective algorithm in partial fourier parallel MRI based on robust estimator. Chinese Journal of Computers, 2011, 34(9): 1732-1738 http://d.old.wanfangdata.com.cn/Periodical/jsjxb201109019
    [29] Bydder M, Robson M D. Partial fourier partially parallel imaging. Magnetic Resonance in Medicine, 2005, 53(6): 1393-1401 doi: 10.1002/mrm.20492
    [30] King K F. Combining compressed sensing and parallel imaging. In: Proceedings of the 16th annual meeting of ISMRM. Toronto, 2008. 1488
    [31] Liu B, Sebert F M, Zou Y, Ying L. SparseSENSE: randomly-sampled parallel imaging using compressed sensing. In: Proceedings of the 16th Annual Meeting of ISMRM. 2008.
    [32] Liang D, Liu B, Wang J J, Ying L. Accelerating SENSE using compressed sensing. Magnetic Resonance in Medicine, 2009, 62(6): 1574-1584 doi: 10.1002/mrm.22161
    [33] Doneva M, Börnert P, Eggers H, Stehning C, Sénégas J, Mertins A. Compressed sensing reconstruction for magnetic resonance parameter mapping. Magnetic Resonance in Medicine, 2010, 64(4): 1114-1120 doi: 10.1002/mrm.22483
    [34] Liu F, Duan Y, Peterson B S, Kangarlu A. Compressed sensing MRI combined with SENSE in partial k-space. Physics in Medicine & Biology, 2012, 57(21): N391-N403 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=1033ff5f36c60de34f7cd73078c3914e
    [35] 张春梅, 尹忠科, 肖明霞.基于冗余字典的信号超完备表示与稀疏分解.科学通报, 2006, 51(6): 628-633 doi: 10.3321/j.issn:0023-074X.2006.06.002

    Zhang Chun-Mei, Yin Zhong-Ke, Xiao Ming-Xia. Signal overcomplete representation and sparse decomposition based on redundant dictionaries. Chinese Science Bulletin, 2006, 51(6): 628-633 doi: 10.3321/j.issn:0023-074X.2006.06.002
    [36] Candés E J, Eldar Y C, Needell D, Randall P. Compressed sensing with coherent and redundant dictionaries. Applied and Computational Harmonic Analysis, 2011, 31(1): 59-73 doi: 10.1016/j.acha.2010.10.002
    [37] Qu X B, Zhang W R, Guo D, Cai C B, Cai S H, Chen Z. Iterative thresholding compressed sensing MRI based on contourlet transform. Inverse Problems in Science and Engineering, 2010, 18(6): 737-758 doi: 10.1080/17415977.2010.492509
    [38] Hao W L, Li J W, Qu X B, Dong Z C. Fast iterative contourlet thresholding for compressed sensing MRI. Electronics Letters, 2013, 49(19): 1206-1208 doi: 10.1049/el.2013.1483
    [39] Huang J Z, Zhang S T, Metaxas D. Efficient MR image reconstruction for compressed MR imaging. Medical Image Analysis, 2011, 15(5): 670-679 doi: 10.1016/j.media.2011.06.001
    [40] Beck A, Teboulle M. A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM Journal on Imaging Sciences, 2009, 2(1): 183-202 doi: 10.1137/080716542
    [41] 周金鹏. MRI快速成像若干研究[硕士学位论文], 北京理工大学, 中国, 2015. 36-41

    Zhou Jin-Peng. Research on Rapid MRI [Master thesis], Beijing Institution of Technology, China, 2015. 36-41
  • 加载中
图(11) / 表(4)
计量
  • 文章访问数:  1838
  • HTML全文浏览量:  614
  • PDF下载量:  208
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-11-08
  • 录用日期:  2019-03-19
  • 刊出日期:  2020-06-01

目录

    /

    返回文章
    返回