2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于局部熵的SLAM视觉里程计优化算法

于雅楠 卫红 陈静

于雅楠, 卫红, 陈静. 基于局部熵的 SLAM 视觉里程计优化算法. 自动化学报, 2021, 47(6): 1460-1466 doi: 10.16383/j.aas.c180278
引用本文: 于雅楠, 卫红, 陈静. 基于局部熵的 SLAM 视觉里程计优化 算法. 自动化学报, 2021, 47(6): 1460-1466 doi: 10.16383/j.aas.c180278
Yu Ya-Nan, Wei Hong, Chen Jing. Optimization algorithm of visual odometry for SLAM based on local image entropy. Acta Automatica Sinica, 2021, 47(6): 1460-1466 doi: 10.16383/j.aas.c180278
Citation: Yu Ya-Nan, Wei Hong, Chen Jing. Optimization algorithm of visual odometry for SLAM based on local image entropy. Acta Automatica Sinica, 2021, 47(6): 1460-1466 doi: 10.16383/j.aas.c180278

基于局部熵的SLAM视觉里程计优化算法

doi: 10.16383/j.aas.c180278
基金项目: 

国家自然科学基金青年科学基金项目 61403282

天津市津南区科技计划项目 201805007

天津职业技术师范大学校级科研项目 KJ1805

详细信息
    作者简介:

    卫红  英国雷丁大学计算机系副教授. 主要研究方向为计算机视觉技术, 模式识别, 遥感信息识别与处理. E-mail: h.wei@reading.ac.uk

    陈静  天津职业技术师范大学信息技术工程学院讲师. 主要研究方向为认知机器人, 人工智能, 自主学习. E-mail: c_j_223@163.com

    通讯作者:

    于雅楠  天津职业技术师范大学信息技术工程学院讲师. 主要研究方向为计算机视觉与图像分析, 光电传感与测试, 移动机器人SLAM技术.本文通信作者. E-mail: jesuisyyn@126.com

Optimization Algorithm of Visual Odometry for SLAM Based on Local Image Entropy

Funds: 

National Natural Science Foundation of China for Youth 61403282

Science and Technology Project of Jinnan District of Tianjin 201805007

Science and Technology Project of Jinnan District of Tianjin (201805007), the Project of Tianjin University of Technology and Education KJ1805

More Information
    Author Bio:

    WEI Hong  Associate professor in the Department of Computer Science, University of Reading. Her research interest covers computer vision technology, pattern recognition, remote sensing information recognition and processing

    CHEN Jing  Lecturer at the School of Information Technology Engineering, Tianjin University of Technology and Education. Her research interest covers cognitive robot, artiflcial intelligence, and autonomous learning

    Corresponding author: YU Ya-Nan  Lecturer at the School of Information Technology Engineering, Tianjin University of Technology and Education. Her research interest covers computer vision and image analysis, photoelectric sensing and testing, SLAM technique for mobile robot. Corresponding author of this paper
  • 摘要:

    针对移动机器人视觉同步定位与地图创建中由于相机大角度转动造成的帧间匹配失败以及跟踪丢失等问题, 提出了一种基于局部图像熵的细节增强视觉里程计优化算法. 建立图像金字塔, 划分图像块进行均匀化特征提取, 根据图像块的信息熵判断其信息量大小, 将对比度低以及梯度变化小的图像块进行删除, 减小图像特征点计算量. 对保留的图像块进行亮度自适应调整, 增强局部图像细节, 尽可能多地提取能够表征图像信息的局部特征点作为相邻帧匹配以及关键帧匹配的关联依据. 结合姿态图优化方法对位姿累计误差进行局部和全局优化, 进一步提高移动机器人系统性能. 采用TUM数据集测试验证, 由于提取了更能反映物体纹理以及形状的特征属性, 本文算法的运动跟踪成功率最高可提升至60 % 以上, 并且测量的轨迹误差、平移误差以及转动误差都有所降低. 与目前ORB-SLAM2系统相比, 本文提出的算法不但提高了移动机器人视觉定位精度, 而且满足实时SLAM的应用需要.

    Recommended by Associate Editor WU Yi-Hong
    1)  本文责任编委 吴毅红
  • 图  1  SLAM系统框架

    Fig.  1  SLAM framework

    图  2  帧间相机大角度转动

    Fig.  2  Big camera rotation in adjacent images

    图  3  视觉里程计优化算法

    Fig.  3  Optimization visual odometry algorithm

    图  4  Gamma非线性曲线

    Fig.  4  Gamma nonlinear curves

    图  5  Gamma修正

    Fig.  5  Gamma correction

    图  6  γ参数曲线

    Fig.  6  γ parameter curve

    图  7  处理结果

    Fig.  7  Processing results

    图  8  匹配结果

    Fig.  8  Matching results

    图  9  匹配结果对比

    Fig.  9  Matching results compared

    图  10  运动轨迹

    Fig.  10  Motion trajectory

    图  11  绝对轨迹误差

    Fig.  11  Absolute trajectory error

    图  12  相对位姿误差

    Fig.  12  Relative pose error

    图  13  光照自适应调整效果A

    Fig.  13  Efiect A of adaptive illumination adjustment

    图  14  光照自适应调整效果B

    Fig.  14  Efiect B of adaptive illumination adjustment

    图  15  不同光照条件下跟踪精度

    Fig.  15  Tracking accuracy in difierent illumination conditions

    图  16  轨迹跟踪结果

    Fig.  16  Trajectory tracking result

    表  1  阈值选取

    Table  1  Threshold selection

    fr1_desk μ = 0.3 μ = 0.4 μ = 0.5 μ = 0.6 μ = 0.7
    平均处理时间 0.063 s 0.064 s 0.062 s 0.063 s 0.06 s
    绝对轨迹误差 0.0156 m 0.0156 m 0.0153 m 0.0163 m 0.0165 m
    相对平移误差 0.0214 m 0.0215 m 0.0209 m 0.0216 m 0.0218 m
    相对旋转误差 1.455° 1.426° 1.412° 1.414° 1.39°
    成功跟踪概率 50 % 40 % 62 % 30 % 25 %
    下载: 导出CSV

    表  2  轨迹分析结果

    Table  2  Trajectory analysis results

    图像序列 平均处理时间 绝对轨迹误差 相对平移误差 相对旋转误差
    fr1_desk ORB-SLAM2 0.036 s 0.0176 m 0.0241 m 1.532°
    优化算法 0.062 s 0.0153 m 0.0209 m 1.412°
    fr1_360 ORB-SLAM2 0.030 s 0.2031 m 0.1496 m 3.806°
    优化算法 0.048 s 0.1851 m 0.1313 m 3.635°
    fr1_floor ORB-SLAM2 0.028 s 0.0159 m 0.0133 m 0.955°
    优化算法 0.051 s 0.0138 m 0.0126 m 0.979°
    fr1_room ORB-SLAM2 0.037 s 0.0574 m 0.0444 m 1.859°
    优化算法 0.057 s 0.047 m 0.0441 m 1.797°
    下载: 导出CSV
  • [1] Fink G K, Franke M, Lynch A F, R"obenack K, Godbolt B. Visual inertial SLAM: Application to unmanned aerial vehicle. IFAC-PapersOnline, 2017, 50(1): 1965-1970 doi: 10.1016/j.ifacol.2017.08.162
    [2] Höll M, Lepetit V. Monocular LSD-SLAM Integration within AR System, Technical Report ICG-CVARLab-TR-ICGCVARLab-TR003, Inst. for Computer Graphics and Vision, Graz University of Technology, Austria, 2017 http://arxiv.org/abs/1702.02514?context=cs.CV
    [3] 王楠, 马书根, 李斌, 王明辉, 赵明杨. 震后建筑内部层次化SLAM的地图模型转换方法. 自动化学报, 2015, 41(10): 1723-1733 doi: 10.16383/j.aas.2015.c150125

    Wang Nan, Ma Shu-Gen, Li Bin, Wang Ming-Hui, Zhao Ming-Yang. A model transformation of map representation for hierarchical SLAM that can be used for after-earthquake buildings. Acta Automatica Sinica, 2015, 41(10): 1723-1733 doi: 10.16383/j.aas.2015.c150125
    [4] 赵洋, 刘国良, 田国会, 罗勇, 王梓任, 张威, 李军伟. 基于深度学习的视觉SLAM综述. 机器人, 2017, 39(6): 889-896 https://www.cnki.com.cn/Article/CJFDTOTAL-JQRR201706015.htm

    Zhao Yang, Liu Guo-Liang, Tian Guo-Hui, Luo Yong, Wang Zi-Ren, Zhang Wei, Li Jun-Wei. A survey of visual SLAM based on deep learning. Robot, 2017, 39(6): 889-896 https://www.cnki.com.cn/Article/CJFDTOTAL-JQRR201706015.htm
    [5] Yi K M, Trulls E, Lepetit V, Fua P. LIFT: Learned invariant feature transform. In: Proceedings of the 14th European Conference on Computer Vision. Amsterdam, Netherlands: 2016. 9910: 467-483
    [6] DeTone D, Malisiewicz T, Rabinovich A. Toward geometric deep SLAM. Computer Vision and Pattern Recognition, arXiv preprint arXiv: 1707.07410, 2017
    [7] 丁文东, 徐德, 刘希龙, 张大朋, 陈天. 移动机器人视觉里程计综述. 自动化学报, 2018, 44(3): 385-400 doi: 10.16383/j.aas.2018.c170107

    Ding Wen-Dong, Xu De, Liu Xi-Long, Zhang Da-Peng, Chen Tian. Review on visual odometry for mobile robots. Acta Automatica Sinica, 2018, 44(3): 385-400 doi: 10.16383/j.aas.2018.c170107
    [8] Cadena C, Carlone L, Carrillo H, Latif Y, Scaramuzza D, Neira J, Reid I, Leonard J J. Past, present, and future of simultaneous localization and mapping: Towards the robust-perception age. IEEE Transactions on Robotics, 2016, 32(6): 1309-1332 doi: 10.1109/TRO.2016.2624754
    [9] Kim J, Kim A. Light condition invariant visual SLAM via entropy based image fusion. In: Proceedings of the 14th International Conference on Ubiquitous Robots and Ambient Intelligence. Jeju, Korea: 2017. 529-533
    [10] Davison A J, Reid I D, Molton N D, Stasse O. MonoSLAM: Real-time single camera SLAM. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29(6): 1052-1067 doi: 10.1109/TPAMI.2007.1049
    [11] Klein G, Murray D. Parallel tracking and mapping for small AR workspaces. In: Proceedings of the 6th IEEE and ACM International Symposium on Mixed and Augmented Reality. Nara, Japan: IEEE, 2007. 225-234
    [12] Endres F, Hess J, Sturm J, Cremers D, Burgard W. 3D mapping with an RGB-D camera. IEEE Transactions on Robotics, 2014, 30(1): 177-187 doi: 10.1109/TRO.2013.2279412
    [13] Mur-Artal R, Montiel J M M, Tard's J D. Orb-SLAM: A versatile and accurate monocular slam system. IEEE Transactions on Robotics, 2015, 31(5): 1147-1163 doi: 10.1109/TRO.2015.2463671
    [14] Mur-Artal R, Tard'os J D. ORB-SLAM2: An open-source SLAM system for monocular, stereo and RGB-D cameras. IEEE Transactions on Robotics, 2017, 33(5): 1255-1262 doi: 10.1109/TRO.2017.2705103
    [15] Lv Q, Lin H, Wang G, Wei H, Wang Y. ORB-SLAM-based tracing and 3d reconstruction for robot using Kinect 2.0. In: Proceedings of the 29th Chinese Control and Decision Conference. Chongqing, China: 2017. 3319-3324
    [16] Newcombe R A, Lovegrove S J, Davison A J. DTAM: dense tracking and mapping in real-time. In: Proceedings of the 2011 IEEE International Conference on Computer Vision. Barcelona, Spain: IEEE, 2011. 2320-2327
    [17] Engel J, Sch"ops T, Cremers D. LSD-SLAM: Large-scale direct monocular SLAM. In: Proceedings of the 13th European Conference on Computer Vision. Zurich, Switzerland: Springer, 2014. 834-849
    [18] Engel J, Usenko V, Cremers D. Direct sparse odometry. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(3): 611-625 doi: 10.1109/TPAMI.2017.2658577
    [19] Forster C, Pizzoli M, Scaramuzza D. SVO: fast semi-direct monocular visual odometry. In: Proceedings of the 2014 IEEE International Conference on Robotics and Automation. Hong Kong, China: IEEE, 2014. 15-22
    [20] Shannon C E. A mathematical theory of communication. ACM SIGMOBILE Mobile Computing and Communications Review, 2001, 5(1): 3-55 doi: 10.1145/584091.584093
    [21] Farid H. Blind inverse gamma correction. IEEE Transactions on Image Processing, 2001, 10(10): 1428-1433 doi: 10.1109/83.951529
    [22] Siebert A. Retrieval of gamma corrected images. Pattern Recognition Letters, 2001, 22(2): 249-256 doi: 10.1016/S0167-8655(00)00107-0
  • 加载中
图(16) / 表(2)
计量
  • 文章访问数:  1250
  • HTML全文浏览量:  446
  • PDF下载量:  378
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-05-03
  • 录用日期:  2019-03-19
  • 刊出日期:  2021-06-10

目录

    /

    返回文章
    返回