2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

噪声下相互依存网络的自适应H异质同步

郭天姣 涂俐兰

郭天姣, 涂俐兰. 噪声下相互依存网络的自适应H∞异质同步. 自动化学报, 2020, 46(6): 1229-1239. doi: 10.16383/j.aas.c180075
引用本文: 郭天姣, 涂俐兰. 噪声下相互依存网络的自适应H异质同步. 自动化学报, 2020, 46(6): 1229-1239. doi: 10.16383/j.aas.c180075
GUO Tian-Jiao, TU Li-Lan. Adaptive H∞ Heterogeneous Synchronization for 0.3 nterdependent Networks With Noise. ACTA AUTOMATICA SINICA, 2020, 46(6): 1229-1239. doi: 10.16383/j.aas.c180075
Citation: GUO Tian-Jiao, TU Li-Lan. Adaptive H Heterogeneous Synchronization for 0.3 nterdependent Networks With Noise. ACTA AUTOMATICA SINICA, 2020, 46(6): 1229-1239. doi: 10.16383/j.aas.c180075

噪声下相互依存网络的自适应H异质同步

doi: 10.16383/j.aas.c180075
基金项目: 

国家自然科学基金 61473338

详细信息
    作者简介:

    郭天姣  武汉科技大学理学院硕士研究生.主要研究方向为复杂网络的同步与控制. E-mail: guotianjiao@wust.edu.cn

    通讯作者:

    涂俐兰  武汉科技大学冶金工业过程系统科学湖北省重点实验室教授, 武汉科技大学理学院教授.主要研究方向为复杂网络的同步, 控制与拓扑结构识别.本文通信作者. E-mail: tulilan@wust.edu.cn

Adaptive H Heterogeneous Synchronization for 0.3 nterdependent Networks With Noise

Funds: 

National Natural Science Foundation of China 61473338

More Information
    Author Bio:

    GUO Tian-Jiao   Master student at the College of Science, Wuhan University of Science and Technology. Her research interest covers synchronization and control of complex networks

    Corresponding author: TU Li-Lan  Professor at Hubei Province Key Laboratory of Systems Science in Metallurgical Process, Wuhan University of Science and Technology, and at College of Science, Wuhan University of Science and Technology. Her research interest covers synchronization, control and topology identiflcation of complex networks. Corresponding author of this paper
  • 摘要: 针对具有噪声的相互依存复杂动力网络, 本文研究了它的局部自适应H异质同步问题.该网络由两个具有"一对一"相互依赖关系的子网构成, 子网内部耦合和子网间的耦合均含有未知但有界的非线性函数.基于李雅普诺夫稳定性理论、线性矩阵不等式(Linear matrix inequality, LMI)技术和自适应以及H控制方法, 本文提出了使得相互依存网络在外部噪声的干扰下, 两个子网各自达到一致的充分条件.这些条件不仅可以保证受扰动的网络获得鲁棒渐近同步而且可以让网络达到一个给定的鲁棒H水平.最后的数值模拟验证了提出的方法的有效性以及可行性.
    Recommended by Associate Editor LU Ren-Quan
    1)  本文责任编委 鲁仁全
  • 图  1  噪声下子网1误差系统迹图

    Fig.  1  The trajectory of the error system of sub-network 1 with noise

    图  2  噪声下子网2误差系统轨迹图

    Fig.  2  The trajectory of the error system of sub-network 2 with noise

    图  3  无噪声子网1误差系统轨迹图

    Fig.  3  The trajectory of the error system of sub-network 1 without noise

    图  4  无噪声子网2误差系统轨迹图

    Fig.  4  The trajectory of the error system of sub-network 2 without noise

    图  5  噪声下子网1自适应律轨迹图

    Fig.  5  The adaptive laws of sub-network 1 with noise

    图  6  噪声下子网2自适应律轨迹图

    Fig.  6  The adaptive laws of sub-network 2 with noise

    图  7  无噪声子网1自适应律轨迹图

    Fig.  7  The adaptive laws of sub-network 1 without noise

    图  8  无噪声子网2自适应律轨迹图

    Fig.  8  The adaptive laws of sub-network 2 without noise

    图  9  子网误差H范数和外部噪声H范数比值开方与时间关系图((a)子网1; (b)子网2)

    Fig.  9  The square root of the ratio between the H norm of the error and noise concerning time ((a) Sub-network 1; (b) Sub-network 2)

  • [1] Buldyrev S V, Parshani R, Paul G, Stanley H E, Havlin S. Catastrophic cascade of failures in interdependent networks. Nature, 2010, 464(7291): 1025-1028 doi: 10.1038/nature08932
    [2] Buldyrev S V, Shere N W, Cwilich G A. Interdependent networks with identical degrees of mutually dependent nodes. Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics, 2011, 83: Article No. 016112 doi: 10.1103-PhysRevE.83.016112/
    [3] Shao J, Buldyrev S V, Havlin S, Stanley H E. Cascade of failures in coupled network systems with multiple support-dependence relations. Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics, 2011, 83: Article No. 036116 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=7d162176add3b0e3b88dc0df8f2c581c
    [4] 李稳国, 邓曙光, 杨冰, 肖卫初.相互依存网络间的拓扑构建方法.计算机工程与应用, 2014, 50(11): 85-89 doi: 10.3778/j.issn.1002-8331.1305-0374

    Li Wen-Guo, Deng Shu-Guang, Yang Bing, Xiao Wei-Chu. Topological coupling method between interdependent networks. Computer Engineering and Applications, 2014, 50(11): 85-89 doi: 10.3778/j.issn.1002-8331.1305-0374
    [5] Shen A W, Guo J L, Wang Z J. Research on methods for improving robustness of cascading failures of interdependent networks. Wireless Personal Communications, 2017, 95(3): 2111-2126 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cd7984ec54dad8309d3c591b2db82064
    [6] Danziger M M, Shekhtman L M, Bashan A, Berezin Y, Havlin S. Vulnerability of interdependent networks and networks of networks. Interconnected Networks. Cham, Germany: Springer International Publishing, 2016.
    [7] Wang J W, Jiang C, Qian J F. Robustness of interdependent networks with different link patterns against cascading failures. Physica A: Statistical Mechanics and Its Applications, 2014, 393: 535-541 doi: 10.1016/j.physa.2013.08.031
    [8] Moskalenko O I, Koronovskii A A, Hramov A E, Zhuravlev M O. Estimate of the degree of synchronization in the intermittent phase synchronization regime from a time series (model systems and neurophysiological data). JETP Letters, 2016, 103(8): 539-543 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=e21b6ed6fd524ad940e31c7784d0846d
    [9] Pai M C. Global synchronization of uncertain chaotic systems via discrete-time sliding mode control. Applied Mathematics and Computation, 2014, 227: 663-671 doi: 10.1016/j.amc.2013.11.075
    [10] Ryono K, Oguchi T. Partial synchronization in networks of nonlinear systems with transmission delay couplings. IFAC-PapersOnLine, 2015, 48(18): 77-82 doi: 10.1016/j.ifacol.2015.11.014
    [11] Rao P C, Wu Z Y, Liu M. Adaptive projective synchronization of dynamical networks with distributed time delays. Nonlinear Dynamics, 2012, 67(3): 1729-1736 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=c95ff83f24ac819b638bfc8d3a3c672b
    [12] Um J, Minnhagen P, Kim B J. Synchronization in interdependent networks. Chaos, 2011, 21(2): Article No. 025106 http://d.old.wanfangdata.com.cn/OAPaper/oai_arXiv.org_1106.6276
    [13] Gao J X, Buldyrev S V, Stanley H E, Havlin S. Networks formed from interdependent networks. Nature Physics, 2012, 8(1): 40-48 doi: 10.1038/nphys2180
    [14] Tu L L, Song S, Wang Y J, Li K Y. The relationship between the topology and synchronizability of partially interdependent networks. EPL (Europhysics Letters), 2017, 119(4): Article No. 40004 doi: 10.1209/0295-5075/119/40004
    [15] 涂俐兰, 刘红芳, 余乐.噪声下时滞复杂网络的局部自适应H无穷一致性.物理学报, 2013, 62(14): 70-77 http://d.old.wanfangdata.com.cn/Periodical/wlxb201314011

    Tu Li-Lan, Liu Hong-Fang, Yu Le. Local adaptive H consistency of delayed complex networks with noise. Acta Physica Sinica, 2013, 62(14): 70-77 http://d.old.wanfangdata.com.cn/Periodical/wlxb201314011
    [16] Shi H J, Sun Y Z, Miao L Y, Duan Z M. Outer synchronization of uncertain complex delayed networks with noise coupling. Nonlinear Dynamics, 2016, 85(4): 2437-2448 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=452b0cf3f2dbc10aa78c158cdb7885c0
    [17] 老松杨, 王竣德, 白亮.相依网络研究综述.国防科技大学学报, 2016, 38(1): 122-128 http://d.old.wanfangdata.com.cn/Periodical/gfkjdxxb201601020

    Lao Song-Yang, Wang Jun-De, Bai Liang. Review of the interdependent networks. Journal of National University of Defense Technology, 2016, 38(1): 122-128 http://d.old.wanfangdata.com.cn/Periodical/gfkjdxxb201601020
    [18] 陈关荣.复杂动态网络环境下控制理论遇到的问题与挑战.自动化学报, 2013, 39(4): 312-321 doi: 10.3724/SP.J.1004.2013.00312

    Chen Guan-Rong. Problems and challenges in control theory under complex dynamical network environments. Acta Automatica Sinica, 2013, 39(4): 312-321 doi: 10.3724/SP.J.1004.2013.00312
    [19] Xu Q, Zhuang S X, Hu D, Zeng Y F, Xiao J. Generalized mutual synchronization between two controlled interdependent networks. Abstract and Applied Analysis, 2014, 2014: Article No. 453149 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=Doaj000003285585
    [20] Zames G. Feedback and optimal sensitivity: model reference transformations, multiplicative seminorms, and approximate inverses. IEEE Transactions on Automatic Control, 1981, 26(2): 301-320 doi: 10.1109-TAC.1981.1102603/
    [21] Doyle J C, Glover K, Khargonekar P P, Francis B A. State-space solutions to standard $H_2$ and H control problems. In: Proceedings of the 1988 American Control Conference. Atlanta, USA: IEEE, 1988. 1691-1696
    [22] Wang Z Y, Huang L H, Zuo Y, Zhang L L. H control for uncertain system with time-delay and nonlinear external disturbance via adaptive control method. International Journal of Control, Automation and Systems, 2010, 8(2): 266-271 doi: 10.1007/s12555-010-0212-x
    [23] Lin T C, Kuo C H. H synchronization of uncertain fractional order chaotic systems: adaptive fuzzy approach. ISA Transactions, 2011, 50(4): 548-556 http://www.sciencedirect.com/science/article/pii/S001905781100067X
    [24] Boyd S, El Ghaoui L, Feron E, Balakrishnan V. Linear Matrix Inequalities in System and Control Theory. Philadelphia: Society for Industrial and Applied Mathematics, 1994. 7-12
  • 加载中
图(9)
计量
  • 文章访问数:  1038
  • HTML全文浏览量:  68
  • PDF下载量:  102
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-01-30
  • 录用日期:  2018-08-21
  • 刊出日期:  2020-07-10

目录

    /

    返回文章
    返回