2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

脉冲控制扩展定理及应用

殷翔 刘峰 佘锦华

殷翔, 刘峰, 佘锦华. 脉冲控制扩展定理及应用. 自动化学报, 2020, 46(1): 58-67. doi: 10.16383/j.aas.c180059
引用本文: 殷翔, 刘峰, 佘锦华. 脉冲控制扩展定理及应用. 自动化学报, 2020, 46(1): 58-67. doi: 10.16383/j.aas.c180059
YIN Xiang, LIU Feng, SHE Jin-Hua. Extension Theorem of Impulsive Control and Its Applications. ACTA AUTOMATICA SINICA, 2020, 46(1): 58-67. doi: 10.16383/j.aas.c180059
Citation: YIN Xiang, LIU Feng, SHE Jin-Hua. Extension Theorem of Impulsive Control and Its Applications. ACTA AUTOMATICA SINICA, 2020, 46(1): 58-67. doi: 10.16383/j.aas.c180059

脉冲控制扩展定理及应用

doi: 10.16383/j.aas.c180059
基金项目: 

国家自然科学基金 61873348

国家自然科学基金 61976099

国家自然科学基金 61633011

国家自然科学基金 61472374

国家重点研发计划 2017YFB1300900

湖北自然科学基金 2015CFA010

教育部高等学校学科创新引智计划项目 B17040

详细信息
    作者简介:

    殷翔  中国地质大学(武汉)自动化学院博士研究生. 2017年获得中国地质大学(武汉)自动化学院控制科学与工程专业硕士学位.主要研究方向为非线性控制系统, 先进控制理论及应用, 机电系统的高精度控制. E-mail: YinXiang_SP@163.com

    佘锦华  中国地质大学(武汉)自动化学院教授. 1983年获得中南矿冶学院工学学士学位. 1990年和1993年分别获得日本东京工业大学硕士和博士学位.主要研究方向为先进控制理论与应用, 重复控制, 机电系统的高精度控制, 机器人运动控制, 康复机器人, 计算智能的工业应用. E-mail: j_she@cug.edu.cn

    通讯作者:

    刘峰  中国地质大学(武汉)自动化学院教授. 2008年获得华中科技大学控制理论与控制工程专业博士学位. 2011年华中科技大学通信与信息系统专业博士后出站.主要研究方向为非线性动力系统, 复杂系统与复杂网络, 脉冲混合系统与智能控制.本文通信作者.E-mail: fliu@cug.edu.cn

Extension Theorem of Impulsive Control and Its Applications

Funds: 

National Natural Science Foundation of China 61873348

National Natural Science Foundation of China 61976099

National Natural Science Foundation of China 61633011

National Natural Science Foundation of China 61472374

National Key Research and Development Program of China 2017YFB1300900

Hubei Provincial Natural Science Foundation of China 2015CFA010

111Project of China B17040

More Information
    Author Bio:

    YIN Xiang   Ph. D. candidate at the School of Automation, China University of Geosciences, Wuhan. He received his master degree from China University of Geosciences (Wuhan) in 2017. His research interest covers nonlinear control system, advanced control theory and applications, and high precision control of mechatronic systems.)

    SHE Jin-Hua   Professor at the School of Automation, China University of Geosciences, Wuhan. He received his bachelor degree from Central South Institute of Mining and Metallurgy in 1983, and received his master and Ph. D. degrees from Tokyo Institute of Technology in 1990 and 1993, respectively. His research interest covers advanced control theory and applications, repetitive control, high precision control of mechatronic systems, robot motion control, rehabilitation robots, and industrial applications of computational intelligence.)

    Corresponding author: LIU Feng   Professor at the School of Automation, China University of Geosciences, Wuhan. He received his Ph. D. degree from Huazhong University of Science and Technology in 2008. From 2009 to 2011, he was a postdoctoral fellow in the Department of Electronics and Information Engineering, Huazhong University of Science and Technology. His research interest covers nonlinear dynamical systems, complex systems, complex networks, impulsive hybrid system, and intelligent control. Corresponding author of this paper.)
  • 摘要: 本文在现有脉冲控制理论的基础上, 针对离散时滞系统, 提出了一种扩展脉冲控制的数学描述方法.基于该描述方法, 推导出脉冲控制扩展定理.该扩展定理的合理应用不仅可以有效避免执行器饱和特性的影响, 而且可以分析执行器存在响应时间时系统的稳定性.进一步研究发现, 当系统存在Neimark-Sacker分岔时, 依据扩展定理设计的控制器可以有效提高系统的临界分岔参数.
    Recommended by Associate Editor HE Wei
    1)  本文责任编委  贺威
  • 图  1  系统平衡点的稳定性分析

    Fig.  1  The stable equilibrium of system

    图  2  系统的Neimark-Sacker分岔

    Fig.  2  The Neimark-Sacker bifurcation of system

    图  3  传统脉冲控制镇定系统的分岔

    Fig.  3  Conventional impulsive control the Neimark-Sacker bifurcation

    图  4  考虑执行器饱和特性时的脉冲控制系统

    Fig.  4  The impulsive control system with actuator saturation

    图  5  扩展脉冲控制对系统的影响

    Fig.  5  The influence of extended impulsive control on the system

  • [1] Lakshmikantham V, Bainov D D, Simeonov P S. Theory of Impulsive Differential Equations. Singapore: World Scientific, 1989.
    [2] Yang X S, Lam J, Ho D W C, Feng Z G. Fixed-time synchronization of complex networks with impulsive effects via nonchattering control. IEEE Transactions on Automatic Control, 2017, 62(11): 5511-5521 doi: 10.1109/TAC.2017.2691303
    [3] Rakkiyappan R, Velmurugan G, George J N, Selvamani R. Exponential synchronization of Lur'e complex dynamical networks with uncertain inner coupling and pinning impulsive control. Applied Mathematics and Computation, 2017, 307: 217-231 doi: 10.1016/j.amc.2017.02.041
    [4] Zhu Q X, Song B. Exponential stability of impulsive nonlinear stochastic differential equations with mixed delays. Nonlinear Analysis: Real World Applications, 2011, 12(5): 2851-2860 doi: 10.1016/j.nonrwa.2011.04.011
    [5] Long S J, Xu D Y. Global exponential stability of non-autonomous cellular neural networks with impulses and time-varying delays. Communications in Nonlinear Science and Numerical Simulation, 2013, 18(6): 1463-1472 doi: 10.1016/j.cnsns.2012.10.015
    [6] 苏晓明, 张品, 祝君宇.广义时变脉冲系统的时域稳定.自动化学报, 2016, 42(2): 309-314 doi: 10.16383/j.aas.2016.c150284

    Su Xiao-Ming, Zhang Pin, Zhu Jun-Yu. Finite-time stability of linear time-varying descriptor impulse systems. Acta Automatica Sinica, 2016, 42(2): 309-314 doi: 10.16383/j.aas.2016.c150284
    [7] Yang T. Impulsive Control Theory. Berlin, Heidelberg: Springer-Verlag, 2001.
    [8] Zhang L, Yang X S, Xu C, Feng J W. Exponential synchronization of complex-valued complex networks with time-varying delays and stochastic perturbations via time-delayed impulsive control. Applied Mathematics and Computation, 2017, 306: 22-30 doi: 10.1016/j.amc.2017.02.004
    [9] Ai Z D, Chen C C. Asymptotic stability analysis and design of nonlinear impulsive control systems. Nonlinear Analysis: Hybrid Systems, 2017, 24: 244-252 doi: 10.1016/j.nahs.2016.10.003
    [10] Jiang X W, Ding L, Guan Z H, Yuan F S. Bifurcation and chaotic behavior of a discrete-time Ricardo-Malthus model. Nonlinear Dynamics, 2013, 71(3): 437-446 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=153d7e803be74d253e30d2512aba68d0
    [11] Yue D D, Guan Z H, Chen J, Ling G, Wu Y H. Bifurcations and chaos of a discrete-time model in genetic regulatory networks. Nonlinear Dynamics, 2017, 87(1): 567-586 doi: 10.1007/s11071-016-3061-1
    [12] Cao J Z, Jiang H J. Hopf bifurcation analysis for a model of single genetic negative feedback autoregulatory system with delay. Neurocomputing, 2013, 99: 381-389 doi: 10.1016/j.neucom.2012.07.021
    [13] Ouannas A, Odibat Z, Shawagfeh N, Alsaedi A, Ahmad B. Universal chaos synchronization control laws for general quadratic discrete systems. Applied Mathematical Modelling, 2017, 45: 636-641 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=7d376a18122845cc7edb70f1ef7a9473
    [14] Salman S M, Yousef A M, Elsadany A A. Stability, bifurcation analysis and chaos control of a discrete predator-prey system with square root functional response. Chaos, Solitons and Fractals, 2016, 93: 20-31 doi: 10.1016/j.chaos.2016.09.020
    [15] Din Q. Global stability and Neimark-Sacker bifurcation of a host-parasitoid model. International Journal of Systems Science, 2017, 48(6): 1194-1202 doi: 10.1080/00207721.2016.1244308
    [16] 刘峰.基于脉冲控制的分叉与混沌系统研究[博士学位论文], 华中科技大学, 中国, 2008

    Liu Feng. Study on Bifurcation and Chaos System with Impulsive Control [Ph.D. dissertation], Huazhong University of Science and Technology, China, 2008
    [17] Zhang Y, Sun J T, Feng G. Impulsive control of discrete systems with time delay. IEEE Transactions on Automatic Control, 2009, 54(4): 830-834 http://d.old.wanfangdata.com.cn/Periodical/xtkxysx201801009
    [18] Wu S C, Li C D, Liao X F, Duan S K. Exponential stability of impulsive discrete systems with time delay and applications in stochastic neural networks: a Razumikhin approach. Neurocomputing, 2012, 82: 29-36 doi: 10.1016/j.neucom.2011.09.029
    [19] Liu F, Guan Z H, Wang H O, Li Y Q. Impulsive control of bifurcations. Mathematics and Computers in Simulation, 2009, 79(7): 2180-2191 doi: 10.1016/j.matcom.2008.12.003
    [20] Zheng Y A, Nian Y B, Liu Z R. Impulsive control for the stabilization of discrete chaotic system. Chinese Physics Letters, 2002, 19(9): 1251-1253 doi: 10.1088/0256-307X/19/9/310
    [21] Liu F, Yin X, Zhang Z, Sun F L. Stability and neimark-sacker bifurcation analysis in a genetic network with delay. Journal of Advanced Computational Intelligence and Intelligent Informatics, 2017, 21(2): 278-283 doi: 10.20965/jaciii.2017.p0278
  • 加载中
图(5)
计量
  • 文章访问数:  2246
  • HTML全文浏览量:  653
  • PDF下载量:  227
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-01-24
  • 录用日期:  2018-04-04
  • 刊出日期:  2020-01-21

目录

    /

    返回文章
    返回