2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一类非线性系统量化反馈控制的几何设计方法

王隔霞

王隔霞. 一类非线性系统量化反馈控制的几何设计方法. 自动化学报, 2020, 46(5): 1044-1050. doi: 10.16383/j.aas.c180046
引用本文: 王隔霞. 一类非线性系统量化反馈控制的几何设计方法. 自动化学报, 2020, 46(5): 1044-1050. doi: 10.16383/j.aas.c180046
WANG Ge-Xia. Geometrical Method on Quantized Feedback Control Design for a Class of Nonlinear Systems. ACTA AUTOMATICA SINICA, 2020, 46(5): 1044-1050. doi: 10.16383/j.aas.c180046
Citation: WANG Ge-Xia. Geometrical Method on Quantized Feedback Control Design for a Class of Nonlinear Systems. ACTA AUTOMATICA SINICA, 2020, 46(5): 1044-1050. doi: 10.16383/j.aas.c180046

一类非线性系统量化反馈控制的几何设计方法

doi: 10.16383/j.aas.c180046
详细信息
    作者简介:

    王隔霞   上海电力大学数理学院副教授.华东师范大学数学系博士研究生. 2003年获得曲阜师范大学应用数学学士学位. 2014年在澳大利亚墨尔本大学访学一年.主要研究方向为量化控制, 奇异摄动控制和事件驱动控制.E-mail:gexiawang@shioep.edu.cn

Geometrical Method on Quantized Feedback Control Design for a Class of Nonlinear Systems

More Information
    Author Bio:

    WANG Ge-Xia Associate professor in the Department of Mathematics and Physics, Shanghai University of Electric Power. Ph. D. candidate in the Department of Mathematics, East China Normal University. She received her bachelor degree from Qufu Normal University in 2003. She had visited Melbourne University in 2014 and studied at the Department of Electrical and Electronic Engineering for one year there. Her research interest covers quantized feedback control, singular perturbation systems and event-triggered control

  • 摘要: 本文考虑了一类非线性系统的对数量化反馈控制器的设计问题.假定该非线性系统满足一定扇形条件, 在此条件下, 通过引入闭环系统函数, 利用函数平移的方法, 给出了文中非线性系统具体的对数量化反馈控制器, 可做到稳定和渐近稳定两种控制目标.所得结论可以推广到线性系统, 与已有的结论相吻合, 说明了我们结论的正确性.同时, 所得结论也可应用于一般非线性系统量化控制器的设计.最后, 数值例子验证了所得结论.
    Recommended by Associate Editor GAO Hui-Jun
    1)  本文责任编委 高会军
  • 图  1  一类量化器

    Fig.  1  A class of quantizer

    图  2  分段闭环系统函数$\Gamma(x)$和开环函数$f(x)$的关系

    Fig.  2  The graphs of the closed-loop function $\Gamma(x)$ and the open-loop function $f(x)$

    图  3  数$y = \sin{\frac{1}{x}}$与直线$y = \pm x$的图($x\in[0.1, 0.5]$)

    Fig.  3  The graphs of $y = \sin{\frac{1}{x}}$ and $y = \pm x$ over $x\in[0.1, 0.5]$

    图  4  非线性系统状态空间的稳定对数划分($s_1$的确定)

    Fig.  4  The state partition of a stable logarithmic quantizer for nonlinear systems (Determine $s_1$)

    图  5  非线性系统状态空间的稳定对数划分($r_1$的确定)

    Fig.  5  The state partition of a stable logarithmic quantizer for nonlinear systems (Determine $r_1$)

    图  6  非线性系统(27)量化控制器下的闭环响应

    Fig.  6  Response of the closed-loop nonlinear system (27) with quantized controller

    图  7  对数量化器

    Fig.  7  The logarithmic quantizer

    图  8  函数$y = x^3-3x^2+2x$, $x\in[0, 3.5]$

    Fig.  8  The curve of $y = x^3-3x^2+2x$, $x\in[0, 3.5]$

    图  9  非线性系统(30)量化控制器下的闭环响应

    Fig.  9  Response of the closed-loop nonlinear system (30) with quantized controller

  • [1] Elia N, Mitter S K. Stabilization of linear systems with limited information. IEEE Transactions on Automatic Control, 2001, 46(9): 1384-1400 doi: 10.1109/9.948466
    [2] Tatikonda S, Mitter S. Control under communication constraints. IEEE Transactions on Automatic Control, 2004, 49(7): 1056-1068 http://d.old.wanfangdata.com.cn/Periodical/zdhxb200605002
    [3] Liberzon D. On stabilization of linear systems with limited information. IEEE Transactions on Automatic Control, 2003, 48(2): 304-307 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=673b54b9093e2a9422ce969f5207f600
    [4] Fu M Y, Xie L H. The sector bound approach to quantized feedback control. IEEE Transactions on Automatic Control, 2005, 50(11): 1698-1711 doi: 10.1109/TAC.2005.858689
    [5] Ishii H, Francis B A. Quadratic stabilization of sampled-data systems with quantization. Automatica, 2003, 39(10): 1793-1800 doi: 10.1016/S0005-1098(03)00179-1
    [6] Sharon Y, Liberzon D. Input to state stabilizing controller for systems with coarse quantization. IEEE Transactions on Automatic Control, 2012, 57(4): 830-844 doi: 10.1109/TAC.2011.2166293
    [7] Brockett R W, Liberzon D. Quantized feedback stabilization of linear systems. IEEE Transactions on Automatic Control, 2000, 45(7): 1279-1289 doi: 10.1109/9.867021
    [8] Tarbouriech S, Gouaisbaut F. Control design for quantized linear systems with saturations. IEEE Transactions on Automatic Control, 2012, 57(7): 1883-1889 doi: 10.1109/TAC.2011.2179845
    [9] Fagnani F, Zampieri S. Stability analysis and synthesis for scalar linear systems with a quantized feedback. IEEE Transactions on Automatic Control, 2003, 48(9): 1569-1584 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=51bf1a9152ba97c68f8e48ca521e89bb
    [10] Li F B, Shi P, Wu L G, Basin M V, Lim C C. Quantized control design for cognitive radio networks modeled as nonlinear Semi-Markovian jump systems. IEEE Transactions on Industrial Electronics, 2015, 62(4): 2330-2340 doi: 10.1109/TIE.2014.2351379
    [11] Feng Y, Chen X, Gu G X. Output feedback stabilization for discrete-time systems under limited communication. IEEE Transactions on Automatic Control, 2017, 62(4): 1927-1932 doi: 10.1109/TAC.2016.2582875
    [12] Liu J L, Elia N. Quantized feedback stabilization of non-linear affine systems. International Journal of Control, 2004, 77(3): 239-249 doi: 10.1080/00207170310001655336
    [13] Wakaiki M, Yamamoto Y. Stabilization of switched linear systems with quantized output and switching delays. IEEE Transactions on Automatic Control, 2017, 62(6): 2958-2964 doi: 10.1109/TAC.2016.2604924
    [14] 王隔霞.一类非线性系统的量化控制器的设计.自动化学报, 2016, 42(1): 140-144 doi: 10.16383/j.aas.2016.c150394

    Wang Ge-Xia. Design of Quantizer for a class of nonlinear systems. Acta Automatica Sinica, 2016, 42(1): 140-144 doi: 10.16383/j.aas.2016.c150394
    [15] 姜钟平, 刘腾飞.量化非线性控制-综述.自动化学报, 2013, 39(11): 1820-1830 doi: 10.3724/SP.J.1004.2013.01820

    Jiang Zhong-Ping, Liu Teng-Fei. Quantized nonlinear control - a survey. Acta Automatica Sinica, 2013, 39(11): 1820-1830 doi: 10.3724/SP.J.1004.2013.01820
    [16] Abdallah C T, Tanner H G. Complex networked control systems: introduction to the special section. IEEE Control Systems, 2007, 27(4): 30-32 doi: 10.1109/MCS.2007.384128
    [17] Antsaklis J, Baillieul J. Special issue on technology of networked control systems. Proceedings of the IEEE, 2007, 95(1): 5-8 http://d.old.wanfangdata.com.cn/Periodical/xtkxysx201801001
  • 加载中
图(9)
计量
  • 文章访问数:  1770
  • HTML全文浏览量:  186
  • PDF下载量:  239
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-01-18
  • 录用日期:  2018-07-02
  • 刊出日期:  2020-06-01

目录

    /

    返回文章
    返回