2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

单目视觉伺服研究综述

徐德

徐德. 单目视觉伺服研究综述. 自动化学报, 2018, 44(10): 1729-1746. doi: 10.16383/j.aas.2018.c170715
引用本文: 徐德. 单目视觉伺服研究综述. 自动化学报, 2018, 44(10): 1729-1746. doi: 10.16383/j.aas.2018.c170715
XU De. A Tutorial for Monocular Visual Servoing. ACTA AUTOMATICA SINICA, 2018, 44(10): 1729-1746. doi: 10.16383/j.aas.2018.c170715
Citation: XU De. A Tutorial for Monocular Visual Servoing. ACTA AUTOMATICA SINICA, 2018, 44(10): 1729-1746. doi: 10.16383/j.aas.2018.c170715

单目视觉伺服研究综述

doi: 10.16383/j.aas.2018.c170715
基金项目: 

科学挑战专题 TZ2018006-0204-02

国家自然科学基金 61733004

详细信息
    作者简介:

    徐德   中国科学院自动化研究所研究员.1985年、1990年获得山东工业大学学士、硕士学位.2001年获得浙江大学博士学位.主要研究方向为机器人视觉测量, 视觉控制, 智能控制, 视觉定位, 显微视觉, 微装配.E-mail:de.xu@ia.ac.cn

A Tutorial for Monocular Visual Servoing

Funds: 

Science Challenge Project TZ2018006-0204-02

National Natural Science Foundation of China 61733004

More Information
    Author Bio:

     Professor at the Institute of Automation, Chinese Academy of Sciences. He received his bachelor degree and master degree from Shandong University of Technology in 1985 and 1990, respectively, and received his Ph. D. degree from Zhejiang University in 2001. His research interest covers robotics and automation such as visual measurement, visual control, intelligent control, visual positioning, microscopic vision, and microassembly

  • 摘要: 视觉伺服是机器人视觉领域的研究热点之一,具有十分广泛的应用前景.本文针对单目视觉系统,从视觉伺服的运动映射关系、误差表征、控制律设计、关键影响因素等多个层面,对视觉伺服的研究现状进行了论述,并分析了不同视觉伺服方法的特点,给出了视觉伺服在不同领域的典型应用.最后,指出了视觉伺服未来的主要发展方向.
    1)  本文责任编委 董峰
  • [1] Hutchinson S, Hager G D, Corke P I. A tutorial on visual servo control. IEEE Transactions on Robotics and Automation, 1996, 12(5):651-670 doi: 10.1109/70.538972
    [2] Malis E, Chaumette F, Boudet S. 2-1/2-D visual servoing. IEEE Transactions on Robotics and Automation, 1999, 15(2):238-250 doi: 10.1109/70.760345
    [3] Malis E, Chaumette F. 2-1/2 D visual servoing with respect to unknown objects through a new estimation scheme of camera displacement. International Journal of Computer Vision, 2000, 37(1):79-97 http://dl.acm.org/citation.cfm?id=351548
    [4] Hashimoto K. A review on vision-based control of robot manipulators. Advanced Robotics, 2003, 17(10):969-991 doi: 10.1163/156855303322554382
    [5] Kragic D, Christensen H I. A framework for visual servoing. In:Computer Vision Systems, Lecture Notes in Computer Science, Vol. 2626. Berlin, Heidelberg:Springer, 2003. 345-354
    [6] Gans N R, Hutchinson S A, Corke P I. Performance tests for visual servo control systems, with application to partitioned approaches to visual servo control. The International Journal of Robotics Research, 2003, 22(10-11):955-981 doi: 10.1177/027836490302210011
    [7] Marchand E, Spindler F, Chaumette F. ViSP for visual servoing:a generic software platform with a wide class of robot control skills. IEEE Robotics & Automation Magazine, 2005, 12(4):40-52 http://doi.ieeecomputersociety.org/resolve?ref_id=doi:10.1109/MRA.2005.1577023&rfr_id=trans/tg/2006/04/ttg2006040615.htm
    [8] Mariottini G L, Prattichizzo D. EGT for multiple view geometry and visual servoing-Robotics and vision with pinhole and panoramics cameras. IEEE Robotics & Automation Magazine, 2005, 12(4):26-39 http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1577022
    [9] Chaumette F, Hutchinson S. Visual servo control. I. Basic approaches. IEEE Robotics & Automation Magazine, 2006, 13(4):82-90 http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0212125537/
    [10] Chaumette F, Hutchinson S. Visual servo control. Ⅱ. Advanced approaches. IEEE Robotics & Automation Magazine, 2007, 14(1):109-118 https://ieeexplore.ieee.org/document/4141039
    [11] Miljković Z, Vuković N, Mitić M, Babić B. New hybrid vision-based control approach for automated guided vehicles. The International Journal of Advanced Manufacturing Technology, 2013, 66(1-4):231-249 doi: 10.1007/s00170-012-4321-y
    [12] Gans N R, Hutchinson S A. Stable visual servoing through hybrid switched-system control. IEEE Transactions on Robotics, 2007, 23(3):530-540 doi: 10.1109/TRO.2007.895067
    [13] Staniak M, Zieliński C. Structures of visual servos. Robotics and Autonomous Systems, 2010, 58(8):940-954 doi: 10.1016/j.robot.2010.04.004
    [14] Janabi-Sharifi F, Deng L F, Wilson W J. Comparison of basic visual servoing methods. IEEE-ASME Transactions on Mechatronics, 2011, 16(5):967-983 doi: 10.1109/TMECH.2010.2063710
    [15] 贾丙西, 刘山, 张凯祥, 陈剑.机器人视觉伺服研究进展:视觉系统与控制策略.自动化学报, 2015, 41(5):861-873 http://www.aas.net.cn/CN/abstract/abstract18661.shtml

    Jia Bing-Xi, Liu Shan, Zhang Kai-Xiang, Chen Jian. Survey on robot visual servo control:vision system and control strategies. Acta Automatica Sinica, 2015, 41(5):861-873 http://www.aas.net.cn/CN/abstract/abstract18661.shtml
    [16] Espiau B, Chaumette F, Rives P. A new approach to visual servoing in robotics. IEEE Transactions on Robotics and Automation, 1992, 8(3):313-326 doi: 10.1109/70.143350
    [17] Comport A I, Marchand E, Pressigout M, Chaumette F. Real-time markerless tracking for augmented reality:the virtual visual servoing framework. IEEE Transactions on Visualization and Computer Graphics, 2006, 12(4):615-628 doi: 10.1109/TVCG.2006.78
    [18] 徐德, 卢金燕.直线特征的交互矩阵求取.自动化学报, 2015, 41(10):1762-1771 http://www.aas.net.cn/CN/abstract/abstract18750.shtml

    Xu De, Lu Jin-Yan. Determination for interactive matrix of line feature. Acta Automatica Sinica, 2015, 41(10):1762-1771 http://www.aas.net.cn/CN/abstract/abstract18750.shtml
    [19] Tahri O, Chaumette F. Point-based and region-based image moments for visual servoing of planar objects. IEEE Transactions on Robotics, 2005, 21(6):1116-1127 doi: 10.1109/TRO.2005.853500
    [20] Chaumette F. Image moments:a general and useful set of features for visual servoing. IEEE Transactions on Robotics, 2004, 20(4):713-723 doi: 10.1109/TRO.2004.829463
    [21] Lin F, Dong X X, Chen B M, Lum K Y, Lee T H. A robust real-time embedded vision system on an unmanned rotorcraft for ground target following. IEEE Transactions on Industrial Electronics, 2012, 59(2):1038-1049 http://www.emeraldinsight.com/servlet/linkout?suffix=b12&dbid=16&doi=10.1108%2FAEAT-10-2012-0164&key=10.1109%2FTIE.2011.2161248
    [22] Tahri O, Araujo H, Chaumette F, Mezouar Y. Robust image-based visual servoing using invariant visual information. Robotics and Autonomous Systems, 2013, 61(12):1588-1600 doi: 10.1016/j.robot.2013.06.010
    [23] Deguchi K. Optimal motion control for image-based visual servoing by decoupling translation and rotation. In:Proceedings of the 1998 IEEE/RSJ International Conference on Intelligent Robots and Systems. Victoria, Canada:IEEE, 1998. 705-711 https://ieeexplore.ieee.org/document/727274
    [24] Crétual A, Chaumette F. Visual servoing based on image motion. The International Journal of Robotics Research, 2001, 20(11):857-877 doi: 10.1177/02783640122068155
    [25] Corke P I, Hutchinson S A. A new partitioned approach to image-based visual servo control. IEEE Transactions on Robotics and Automation, 2001, 17(4):507-515 doi: 10.1109/70.954764
    [26] Iwatsuki M, Okiyama N. A new formulation of visual servoing based on cylindrical coordinate system. IEEE Transactions on Robotics, 2005, 21(2):266-273 doi: 10.1109/TRO.2004.837242
    [27] Kelly R, Carelli R, Nasisi O, Kuchen B, Reyes F. Stable visual servoing of camera-in-hand robotic systems. IEEE-ASME Transactions on Mechatronics, 2000, 5(1):39-48 doi: 10.1109/3516.828588
    [28] Xu D, Lu J Y, Wang P, Zhang Z T, Zhang D P, Liang Z Z. A new image-based visual servoing method with rotational compensation. In:Proceedings of 2016 IEEE International Conference on Robotics and Biomimetics. Qingdao, China:IEEE, 2016. 1099-1104
    [29] 徐德, 谭民, 李原.机器人视觉测量与控制.北京:国防工业出版社, 2008.

    Xu De, Tan Min, Li Yuan. Visual Measurement and Control for Robots. Beijing:National Defense Industry Press, 2008.
    [30] La Anh T, Song J B. Robotic grasping based on efficient tracking and visual servoing using local feature descriptors. International Journal of Precision Engineering and Manufacturing, 2012, 13(3):387-393 doi: 10.1007/s12541-012-0049-8
    [31] Xu D, Lu J Y, Wang P, Zhang Z T, Liang Z Z. Partially decoupled image-based visual servoing using different sensitive features. IEEE Transactions on Systems, Man, and Cybernetics:Systems, 2017, 47(8):2233-2243 doi: 10.1109/TSMC.2016.2641951
    [32] Benhimane S, Malis E. Homography-based 2D visual tracking and servoing. The International Journal of Robotics Research, 2007, 26(7):661-676 doi: 10.1177/0278364907080252
    [33] de Plinval H, Morin P, Mouyon P, Hamel T. Visual servoing for underactuated VTOL UAVs:a linear, homography-based framework. International Journal of Robust and Nonlinear Control, 2014, 24(16):2285-2308 doi: 10.1002/rnc.v24.16
    [34] Jia B X, Liu S, Liu Y. Visual trajectory tracking of industrial manipulator with iterative learning control. Industrial Robot:An International Journal, 2015, 42(1):54-63 doi: 10.1108/IR-09-2014-0392
    [35] Silveira G, Malis E. Direct visual servoing:vision-based estimation and control using only nonmetric information. IEEE Transactions on Robotics, 2012, 28(4):974-980 doi: 10.1109/TRO.2012.2190875
    [36] Kyrki V, Kragic D, Christensen H I. Measurement errors in visual servoing. Robotics and Autonomous Systems, 2006, 54(10):815-827 doi: 10.1016/j.robot.2006.05.002
    [37] Malis E, Chesi G, Cipolla R. 21/2 D visual servoing with respect to planar contours having complex and unknown shapes. International Journal of Robotics Research, 2003, 22(10-11):841-853 doi: 10.1177/027836490302210004
    [38] Malis E, Benhimane S. A unified approach to visual tracking and servoing. Robotics and Autonomous Systems, 2005, 52(1):39-52 doi: 10.1016/j.robot.2005.03.014
    [39] Chen J, Dawson D M, Dixon W E, Behal A. Adaptive homography-based visual servo tracking for a fixed camera configuration with a camera-in-hand extension. IEEE Transactions on Control Systems Technology, 2005, 13(5):814-825 doi: 10.1109/TCST.2005.852150
    [40] Chen J, Dawson D M, Dixon W E, Chitrakaran V K. Navigation function-based visual servo control. Automatica, 2007, 43(7):1165-1177 doi: 10.1016/j.automatica.2006.12.018
    [41] Hu G, MacKunis W, Gans N, Dixon W E, Chen J, Behal A, et al. Homography-based visual servo control with imperfect camera calibration. IEEE Transactions on Automatic Control, 2009, 54(6):1318-1324 doi: 10.1109/TAC.2009.2015541
    [42] Hu G Q, Gans N, Fitz-Coy N, Dixon W. Adaptive homography-based visual servo tracking control via a quaternion formulation. IEEE Transactions on Control Systems Technology, 2010, 18(1):128-135 doi: 10.1109/TCST.2008.2009227
    [43] Fang Y C, Dixon W E, Dawson D M, Chawda P. Homography-based visual servo regulation of mobile robots. IEEE Transactions on Systems, Man, and Cybernetics, Part B-Cybernetics, 2005, 35(5):1041-1050 doi: 10.1109/TSMCB.2005.850155
    [44] Chen J, Dixon W E, Dawson D M, McIntyre M. Homography-based visual servo tracking control of a wheeled mobile robot. IEEE Transactions on Robotics, 2006, 22(2):406-415 doi: 10.1109/TRO.2006.862476
    [45] Lopez-Nicolas G, Gans N R, Bhattacharya S, Sagüés C, Guerrero J J, Hutchinson S. Homography-based control scheme for mobile robots with nonholonomic and field-of-view constraints. IEEE Transactions on Systems, Man, and Cybernetics, Part B-Cybernetics, 2010, 40(4):1115-1127 doi: 10.1109/TSMCB.2009.2034977
    [46] Zhang X B, Fang Y C, Liu X. Motion-estimation-based visual servoing of nonholonomic mobile robots. IEEE Transactions on Robotics, 2011, 27(6):1167-1175 doi: 10.1109/TRO.2011.2162765
    [47] Basri R, Rivlin E, Shimshoni I. Visual homing:surfing on the epipoles. International Journal of Computer Vision, 1999, 33(2):117-137 doi: 10.1023/A:1008194012143
    [48] Sebastián J M, L Pari, L Angel, Traslosheros A. Uncalibrated visual servoing using the fundamental matrix. Robotics and Autonomous Systems, 2009, 57(1):1-10 doi: 10.1016/j.robot.2008.04.002
    [49] Mariottini G L, Oriolo G, Prattichizzo D. Image-based visual servoing for nonholonomic mobile robots using epipolar geometry. IEEE Transactions on Robotics, 2007, 23(1):87-100 doi: 10.1109/TRO.2006.886842
    [50] Becerra H M, López-Nicolás G, Sagüés C. A sliding-mode-control law for mobile robots based on epipolar visual servoing from three views. IEEE Transactions on Robotics, 2011, 27(1):175-183 doi: 10.1109/TRO.2010.2091750
    [51] Mariottini G L, Prattichizzo D. Image-based visual servoing with central catadioptric cameras. The International Journal of Robotics Research, 2008, 27(1):41-56 http://dl.acm.org/citation.cfm?id=1325586
    [52] Montijano E, Thunberg J, Hu X M, Sagues C. Epipolar visual servoing for multirobot distributed consensus. IEEE Transactions on Robotics, 2013, 29(5):1212-1225 doi: 10.1109/TRO.2013.2271101
    [53] Mitić M, Miljković Z. Neural network learning from demonstration and epipolar geometry for visual control of a nonholonomic mobile robot. Soft Computing, 2014, 18(5):1011-1025 doi: 10.1007/s00500-013-1121-8
    [54] Andreff N, Espiau B, Horaud R. Visual servoing from lines. The International Journal of Robotics Research, 2002, 21(8):679-699 doi: 10.1177/027836402761412430
    [55] Wang H S, Liu Y H, Zhou D X. Adaptive visual servoing using point and line features with an uncalibrated eye-in-hand camera. IEEE Transactions on Robotics, 2008, 24(4):843-857 doi: 10.1109/TRO.2008.2001356
    [56] Liu Y H, Wang H S, Chen W D, Zhou D X. Adaptive visual servoing using common image features with unknown geometric parameters. Automatica, 2013, 49(8):2453-2460 doi: 10.1016/j.automatica.2013.04.018
    [57] López-Nicolás G, Guerrero J J, Sagüés C. Visual control of vehicles using two-view geometry. Mechatronics, 2010, 20(2):315-325 doi: 10.1016/j.mechatronics.2010.01.005
    [58] Drummond T, Cipolla R. Real-time visual tracking of complex structures. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(7):932-946 doi: 10.1109/TPAMI.2002.1017620
    [59] Marchand É, Bouthemy P, Chaumette F. A 2D-3D model-based approach to real-time visual tracking. Image and Computing, 2001, 19(13):941-955 doi: 10.1016/S0262-8856(01)00054-3
    [60] Marchand É, Chaumette F. Feature tracking for visual servoing purposes. Robotics and Autonomous Systems, 2005, 52(1):53-70 doi: 10.1016/j.robot.2005.03.009
    [61] Yesin K B, Nelson B J. A CAD model based tracking system for visually guided microassembly. Robotica, 2005, 23(4):409-418 doi: 10.1017/S0263574704000840
    [62] Tamadazte B, Marchand E, Dembélé S, Le Fort-Piat N. CAD model-based tracking and 3D visual-based control for MEMS microassembly. The International Journal of Robotics Research, 2010, 29(11):1416-1434 doi: 10.1177/0278364910376033
    [63] Dame A, Marchand E. Mutual information-based visual servoing. IEEE Transactions on Robotics, 2011, 27(5):958-969 doi: 10.1109/TRO.2011.2147090
    [64] Gaspar J, Winters N, Santos-Victor J. Vision-based navigation and environmental representations with an omnidirectional camera. IEEE Transactions on Robotics and Automation, 2000, 16(6):890-898 doi: 10.1109/70.897802
    [65] Goedemé T, Nuttin M, Tuytelaars T, Van Gool L. Omnidirectional vision based topological navigation. International Journal of Computer Vision, 2007, 74(3):219-236 doi: 10.1007/s11263-006-0025-9
    [66] Hadj-Abdelkader H, Mezouar Y, Martinet P, Chaumette F. Catadioptric visual servoing from 3-D straight lines. IEEE Transactions on Robotics, 2008, 24(3):652-665 doi: 10.1109/TRO.2008.919288
    [67] Becerra H M, López-Nicolás G, Sagüés C. Omnidirectional visual control of mobile robots based on the 1D trifocal tensor. Robotics and Autonomous Systems, 2010, 58(6):796-808 doi: 10.1016/j.robot.2010.02.011
    [68] Copot C, Lazar C, Burlacu A. Predictive control of nonlinear visual servoing systems using image moments. IET Control Theory and Applications, 2012, 6(10):1486-1496 doi: 10.1049/iet-cta.2011.0118
    [69] Tahri O, Tamtsia A Y, Mezouar Y, Demonceaux C. Visual servoing based on shifted moments. IEEE Transactions on Robotics, 2015, 31(3):798-804 doi: 10.1109/TRO.2015.2412771
    [70] Zheng D L, Wang H S, Wang J C, Chen S S, Chen W D, Liang X W. Image-based visual servoing of a quadrotor using virtual camera approach. IEEE-ASME Transactions on Mechatronics, 2017, 22(2):972-982 doi: 10.1109/TMECH.2016.2639531
    [71] Dame A, Marchand E. Using mutual information for appearance-based visual path following. Robotics and Autonomous Systems, 2013, 61(3):259-270 doi: 10.1016/j.robot.2012.11.004
    [72] Janabi-Sharifi F, Wilson W J. Automatic selection of image features for visual servoing. IEEE Transactions on Robotics and Automation, 1997, 13(6):890-903 doi: 10.1109/70.650168
    [73] Cowan N J, Weingarten J D, Koditschek D E. Visual servoing via navigation functions. IEEE Transactions on Robotics and Automation, 2002, 18(4):521-533 doi: 10.1109/TRA.2002.802202
    [74] Mahony R, Hamel T. Image-based visual servo control of aerial robotic systems using linear image features. IEEE Transactions on Robotics, 2005, 21(2):227-239 doi: 10.1109/TRO.2004.835446
    [75] Mahony R, Corke P, Hamel T. Dynamic image-based visual servo control using centroid and optic flow features. Journal of Dynamic Systems, Measurement, and Control, 2007, 130(1):011005 http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0214090175/
    [76] Yu Y K, Wong K H, Or S H, Chang M M Y. Robust 3-D motion tracking from stereo images:a model-less method. IEEE Transactions on Instrumentation and Measurement, 2008, 57(3):622-630 doi: 10.1109/TIM.2007.911641
    [77] López-Nicolás G, Guerrero J J, Sagüés C. Visual control through the trifocal tensor for nonholonomic robots. Robotics and Autonomous Systems, 2010, 58(2):216-226 doi: 10.1016/j.robot.2009.09.005
    [78] Chen J, Jia B X, Zhang K X. Trifocal tensor-based adaptive visual trajectory tracking control of mobile robots. IEEE Transactions on Cybernetics, 2017, 47(11):3784-3798 doi: 10.1109/TCYB.2016.2582210
    [79] Matthies L, Xiong Y, Hogg R, Zhu D, Rankin A, Kennedy B, et al. A portable, autonomous, urban reconnaissance robot. Robotics and Autonomous Systems, 2002, 40(2-3):163-172 doi: 10.1016/S0921-8890(02)00241-5
    [80] Lane D M, Chantler M J, Dai D Y. Robust tracking of multiple objects in sector-scan sonar image sequences using optical flow motion estimation. IEEE Journal of Oceanic Engineering, 1998, 23(1):31-46 doi: 10.1109/48.659448
    [81] Campoy P, Correa J F, Mondragón I, Martínez C, Olivares M, Mejías L, et al. Computer vision onboard UAVs for civilian tasks. Journal of Intelligent & Robotics Systems, 2009, 54(1-3):105-135 doi: 10.1007/978-1-4020-9137-7_8
    [82] Zhao Y M, Xie W F, Liu S N. Image-based visual servoing using improved image moments in 6-DOF robot systems. International Journal of Control, Automation and Systems, 2013, 11(3):586-596 doi: 10.1007/s12555-012-0232-9
    [83] Pressigout M, Marchand E. Real-time hybrid tracking using edge and texture information. The International Journal of Robotics Research, 2007, 26(7):689-713 doi: 10.1177/0278364907080477
    [84] Fomena R T, Tahri O, Chaumette F. Distance-based and orientation-based visual servoing from three points. IEEE Transactions on Robotics, 2011, 27(2):256-267 doi: 10.1109/TRO.2011.2104431
    [85] Collewet C, Marchand E. Photometric visual servoing. IEEE Transactions on Robotics, 2011, 27(4):828-834 doi: 10.1109/TRO.2011.2112593
    [86] Silveira G. On intensity-based 3D visual servoing. Robotics and Autonomous Systems, 2014, 62(11):1636-1645 doi: 10.1016/j.robot.2014.03.008
    [87] Silveira G. On intensity-based nonmetric visual servoing. IEEE Transactions on Robotics, 2014, 30(4):1019-1026 doi: 10.1109/TRO.2014.2315712
    [88] De Luca A, Oriolo G, Giordano P R. Feature depth observation for image-based visual servoing:theory and experiments. The International Journal of Robotics Research, 2008, 27(10):1093-1116 doi: 10.1177/0278364908096706
    [89] Cheah C C, Liu C, Slotine J J E. Adaptive Jacobian vision based control for robots with uncertain depth information. Automatica, 2010, 46(7):1228-1233 doi: 10.1016/j.automatica.2010.04.009
    [90] Xie W F, Li Z, Tu X W, Perron C. Switching control of image-based visual servoing with laser pointer in robotic manufacturing systems. IEEE Transactions on Industrial Electronics, 2009, 56(2):520-529 doi: 10.1109/TIE.2008.2003217
    [91] Cherubini A, Chaumette F, Oriolo G. Visual servoing for path reaching with nonholonomic robots. Robotica, 2011, 29(7):1037-1048 doi: 10.1017/S0263574711000221
    [92] Malis E, Chaumette F. Theoretical improvements in the stability analysis of a new class of model-free visual servoing methods. IEEE Transactions on Robotics and Automation, 2002, 18(2):176-186 doi: 10.1109/TRA.2002.999646
    [93] Park D H, Kwon J H, Ha I J. Novel position-based visual servoing approach to robust global stability under field-of-view constraint. IEEE Transactions on Industrial Electronics, 2012, 59(12):4735-4752 doi: 10.1109/TIE.2011.2179270
    [94] Xu D, Li Y F, Tan M. A general recursive linear method and unique solution pattern design for the perspective-n-point problem. Image and Vision Computing, 2008, 26(6):740-750 doi: 10.1016/j.imavis.2007.08.008
    [95] Metni N, Hamel T. A UAV for bridge inspection:visual servoing control law with orientation limits. Automation in Construction, 2007, 17(1):3-10 http://www.sciencedirect.com/science/article/pii/S0926580507000052
    [96] Chesi G, Hashimoto K, Prattichizzo D, Vicino A. Keeping features in the field of view in eye-in-hand visual servoing:a switching approach. IEEE Transactions on Robotics, 2004, 20(5):908-913 doi: 10.1109/TRO.2004.829456
    [97] Deng L F, Janabi-Sharifi F, Wilson W J. Hybrid motion control and planning strategies for visual servoing. IEEE Transactions on Industrial Electronics, 2005, 52(4):1024-1040 doi: 10.1109/TIE.2005.851651
    [98] Mezouar Y, Chaumette F. Optimal camera trajectory with image-based control. The International Journal of Robotics Research, 2003, 22(10-11):781-803 doi: 10.1177/027836490302210001
    [99] Kragic D, Christensen H I. Robust visual servoing. International Journal of Robotics Research, 2003, 22(10-11):923-939 doi: 10.1177/027836490302210009
    [100] Ibarguren A, Martínez-Otzeta J M, Maurtua I. Particle filtering for industrial 6DOF visual servoing. Journal of Intelligent & Robotic Systems, 2014, 74(3-4):689-696 doi: 10.1007/s10846-013-9854-2
    [101] Chesi G, Vicino A. Visual servoing for large camera displacements. IEEE Transactions on Robotics, 2004, 20(4):724-735 doi: 10.1109/TRO.2004.829465
    [102] Cowan N J, Chang D E. Geometric visual servoing. IEEE Transactions on Robotics, 2005, 21(6):1128-1138 doi: 10.1109/TRO.2005.853491
    [103] Schramm F, Morel G. Ensuring visibility in calibration-free path planning for image-based visual servoing. IEEE Transactions on Robotics, 2006, 22(4):848-854 doi: 10.1109/TRO.2006.878955
    [104] Wang Y, Lang H X, de Silva C W. A hybrid visual servo controller for robust grasping by wheeled mobile robots. IEEE-ASME Transactions on Mechatronics, 2010, 15(5):757-769 doi: 10.1109/TMECH.2009.2034740
    [105] Gans N R, Hu G Q, Nagarajan K, Dixon W E. Keeping multiple moving targets in the field of view of a mobile camera. IEEE Transactions on Robotics, 2011, 27(4):822-828 doi: 10.1109/TRO.2011.2158695
    [106] Fang Y C, Liu X, Zhang X B. Adaptive active visual servoing of nonholonomic mobile robots. IEEE Transactions on Industrial Electronics, 2012, 59(1):486-497 doi: 10.1109/TIE.2011.2143380
    [107] Goncalves P J S, Mendonca L F, Sousa J M C, Pinto J R C. Uncalibrated eye-to-hand visual servoing using inverse fuzzy models. IEEE Transactions on Fuzzy Systems, 2008, 16(2):341-353 doi: 10.1109/TFUZZ.2007.896226
    [108] Kim G W. Uncalibrated visual servoing through the efficient estimation of the image Jacobian for large residual. Journal of Electrical Engineering & Technology, 2013, 8(2):385-392 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=JAKO201310559989999
    [109] Piepmeier J A, Lipkin H. Uncalibrated eye-in-hand visual servoing. The International Journal of Robotics Research, 2003, 22(10-11):805-819 doi: 10.1177/027836490302210002
    [110] Piepmeier J A, McMurray G V, Lipkin H. Uncalibrated dynamic visual servoing. IEEE Transactions on Robotics and Automation, 2004, 20(1):143-147 doi: 10.1109/TRA.2003.820923
    [111] Bonkovic M, Hace A, Jezernik K. Population-based uncalibrated visual servoing. IEEE-ASME Transactions on Mechatronics, 2008, 13(3):393-397 doi: 10.1109/TMECH.2008.924135
    [112] Shen Y T, Sun D, Liu Y H, Li K J. Asymptotic trajectory tracking of manipulators using uncalibrated visual feedback. IEEE-ASME Transactions on Mechatronics, 2003, 8(1):87-98 doi: 10.1109/TMECH.2003.809133
    [113] Liu Y H, Wang H S, Wang C Y, Lam K K. Uncalibrated visual servoing of robots using a depth-independent interaction matrix. IEEE Transactions on Robotics, 2006, 22(4):804-817 doi: 10.1109/TRO.2006.878788
    [114] Zhang X B, Fang Y C, Li B Q, Wang J. Visual servoing of nonholonomic mobile robots with uncalibrated camera-to-robot parameters. IEEE Transactions on Industrial Electronics, 2017, 64(1):390-400 doi: 10.1109/TIE.2016.2598526
    [115] Wang H S, Liu Y H, Chen W D. Uncalibrated visual tracking control without visual velocity. IEEE Transactions on Control Systems Technology, 2010, 18(6):1359-1370 doi: 10.1109/TCST.2010.2041457
    [116] Malis E. Visual servoing invariant to changes in camera-intrinsic parameters. IEEE Transactions on Robotics and Automation, 2004, 20(1):72-81 doi: 10.1109/TRA.2003.820847
    [117] Kosmopoulos D I. Robust Jacobian matrix estimation for image-based visual servoing. Robotics and Computer-Integrated Manufacturing, 2011, 27(1):82-87 doi: 10.1016/j.rcim.2010.06.013
    [118] Horaud R, Dornaika F, Espiau B. Visually guided object grasping. IEEE Transactions on Robotics and Automation, 1998, 14(4):525-532 doi: 10.1109/70.704214
    [119] Xiao D, Ghosh B K, Xi N, Tarn T J. Sensor-based hybrid position/force control of a robot manipulator in an uncalibrated environment. IEEE Transactions on Control Systems Technology, 2000, 8(4):635-645 doi: 10.1109/87.852909
    [120] Lippiello V, Siciliano B, Villani L. Position-based visual servoing in industrial multirobot cells using a hybrid camera configuration. IEEE Transactions on Robotics, 2007, 23(1):73-86 doi: 10.1109/TRO.2006.886832
    [121] Tamadazte B, Piat N L F, Dembélé S. Robotic micromanipulation and microassembly using monoview and multiscale visual servoing. IEEE-ASME Transactions on Mechatronics, 2011, 16(2):277-287 doi: 10.1109/TMECH.2010.2040900
    [122] Tamadazte B, Piat N L F, Marchand E. A direct visual servoing scheme for automatic nanopositioning. IEEE-ASME Transactions on Mechatronics, 2012, 17(4):728-736 doi: 10.1109/TMECH.2011.2128878
    [123] Ralis S J, Vikramaditya B, Nelson B J. Micropositioning of a weakly calibrated microassembly system using coarse-to-fine visual servoing strategies. IEEE Transactions on Electronics Packaging Manufacturing, 2000, 23(2):123-131 doi: 10.1109/6104.846935
    [124] Ferreira A, Cassier C, Hirai S. Automatic microassembly system assisted by vision servoing and virtual reality. IEEE-ASME Transactions on Mechatronics, 2004, 9(2):321-333 doi: 10.1109/TMECH.2004.828655
    [125] Wang J P, Cho H. Micropeg and hole alignment using image moments based visual servoing method. IEEE Transactions on Industrial Electronics, 2008, 55(3):1286-1294 doi: 10.1109/TIE.2007.911206
    [126] Wang L D, Mills J K, Cleghorn W L. Automatic microassembly using visual servo control. IEEE Transactions on Electronics Packaging Manufacturing, 2008, 31(4):316-325 doi: 10.1109/TEPM.2008.926118
    [127] Ouyang P R, Zhang W J, Gupta M M, Zhao W. Overview of the development of a visual based automated bio-micromanipulation system. Mechatronics, 2007, 17(10):578-588 doi: 10.1016/j.mechatronics.2007.06.002
    [128] Sun Y, Nelson B J. Biological cell injection using an autonomous microrobotic system. The International Journal of Robotics Research, 2002, 21(10-11):861-868 doi: 10.1177/0278364902021010833
    [129] Zhang Y, Tan K K, Huang S. Vision-servo system for automated cell injection. IEEE Transactions on Industrial Electronics, 2009, 56(1):231-238 doi: 10.1109/TIE.2008.925771
    [130] Sakaki K, Dechev N, Burke R D, Park E J. Development of an autonomous biological cell manipulator with single-cell electroporation and visual servoing capabilities. IEEE Transactions on Biomedical Engineering, 2009, 56(8):2064-2074 doi: 10.1109/TBME.2009.2021577
    [131] Zhuang S L, Lin W Y, Gao H J, Shang X X, Li L. Visual servoed zebrafish larva heart microinjection system. IEEE Transactions on Industrial Electronics, 2017, 64(5):3727-3736 doi: 10.1109/TIE.2017.2652380
    [132] Wei G Q, ARbter K, Hirzinger G. Real-time visual servoing for laparoscopic surgery. Controlling robot motion with color image segmentation. IEEE Engineering in Medicine and Biology Magazine, 1997, 16(1):40-45 doi: 10.1109/51.566151
    [133] Krupa A, Gangloff J, Doignon C, de Mathelin M F, Morel G, Leroy J, et al. Autonomous 3-D positioning of surgical instruments in robotized Laparoscopic surgery using visual servoing. IEEE Transactions on Robotics and Automation, 2003, 19(5):842-853 doi: 10.1109/TRA.2003.817086
    [134] Abolmaesumi P, Salcudean S E, Zhu W H, Sirouspour M R, DiMaio S P. Image-guided control of a robot for medical ultrasound. IEEE Transactions on Robotics and Automation, 2002, 18(1):11-23 doi: 10.1109/70.988970
    [135] Hamel T, Mahony R. Image based visual servo control for a class of aerial robotic systems. Automatica, 2007, 43(11):1975-1983 doi: 10.1016/j.automatica.2007.03.030
    [136] Huh S, Shim D H. A vision-based landing system for small unmanned aerial vehicles using an airbag. Control Engineering Practice, 2010, 18(7):812-823 doi: 10.1016/j.conengprac.2010.05.003
    [137] Azinheira J R, Rives P. Image-based visual servoing for vanishing features and ground lines tracking:application to a UAV automatic landing. International Journal of Optomechatronics, 2008, 2(3):275-295 doi: 10.1080/15599610802303314
    [138] Huh S, Shim D H. A vision-based automatic landing method for fixed-wing UAVs. Journal of Intelligent & Robotic Systems, 2010, 57(1-4):217-231 doi: 10.1007/s10846-009-9382-2
    [139] Le Bras F, Hamel T, Mahony R, Barat C, Thadasack J. Approach maneuvers for autonomous landing using visual servo control. IEEE Transactions on Aerospace and Electronic Systems, 2014, 50(2):1051-1065 doi: 10.1109/TAES.2013.110780
    [140] Mejías L, Saripalli S, Campoy P, Sukhatme G S. Visual servoing of an autonomous helicopter in urban areas using feature tracking. Journal of Field Robotics, 2006, 23(3-4):185-199 doi: 10.1002/(ISSN)1556-4967
    [141] Guenard N, Hamel T, Mahony R. A practical visual servo control for an unmanned aerial vehicle. IEEE Transactions on Robotics, 2008, 24(2):331-340 doi: 10.1109/TRO.2008.916666
    [142] Bourquardez O, Mahony R, Guenard N, Chaumette F, Hamel T, Eck L. Image-based visual servo control of the translation kinematics of a quadrotor aerial vehicle. IEEE Transactions on Robotics, 2009, 25(3):743-749 doi: 10.1109/TRO.2008.2011419
    [143] Xie H, Lynch A F. Input saturated visual servoing for unmanned aerial vehicles. IEEE-ASME Transactions on Mechatronics, 2017, 22(2):952-960 doi: 10.1109/TMECH.2016.2608862
    [144] Mahony R, Kumar V, Corke P. Multirotor aerial vehicles:modeling, estimation, and control of quadrotor. IEEE Robotics & Automation Magazine, 2012, 19(3):20-32 http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=6289431
    [145] Serra P, Cunha R, Hamel T, Cabecinhas D, Silvestre C. Landing of a quadrotor on a moving target using dynamic image-based visual servo control. IEEE Transactions on Robotics, 2016, 32(6):1524-1535 doi: 10.1109/TRO.2016.2604495
    [146] Marchand É, Chaumette F. Virtual visual servoing:a framework for real-time augmented reality. Computer Graphics Forum, 2002, 21(3):289-297 doi: 10.1111/cgf.2002.21.issue-3
    [147] Gracias N R, van der Zwaan S, Bernardino A, Santos-Victor J. Mosaic-based navigation for autonomous underwater vehicles. IEEE Journal of Oceanic Engineering, 2003, 28(4):609-624 doi: 10.1109/JOE.2003.819156
    [148] Mehta S S, Burks T F. Vision-based control of robotic manipulator for citrus harvesting. Computers and Electronics in Agriculture, 2014, 102:146-158 doi: 10.1016/j.compag.2014.01.003
    [149] Mehta S S, Ton C, Kan Z, Curtis J W. Vision-based navigation and guidance of a sensorless missile. Journal of the Franklin Institute, 2015, 352(12):5569-5598 doi: 10.1016/j.jfranklin.2015.09.010
    [150] Cai J, Huang P F, Zhang B, Wang D K. A TSR visual servoing system based on a novel dynamic template matching method. Sensors, 2015, 15(12):32152-32167 doi: 10.3390/s151229884
    [151] Wang H S, Yang B H, Liu Y T, Chen W D, Liang X W, Pfeifer R. Visual servoing of soft robot manipulator in constrained environments with an adaptive controller. IEEE-ASME Transactions on Mechatronics, 2017, 22(1):41-50 doi: 10.1109/TMECH.2016.2613410
    [152] Pomares J, Torres F. Movement-flow-based visual servoing and force control fusion for manipulation tasks in unstructured environments. IEEE Transactions on Systems, Man, and Cybernetics, Part C-Applications and Reviews, 2005, 35(1):4-15 doi: 10.1109/TSMCC.2004.840045
    [153] Chesi G, Hung Y S. Global path-planning for constrained and optimal visual servoing. IEEE Transactions on Robotics, 2007, 23(5):1050-1060 doi: 10.1109/TRO.2007.903817
    [154] Shen T T, Chesi G. Visual servoing path planning for cameras obeying the unified model. Advanced Robotics, 2012, 26(8-9):843-860 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=JJ0227270387
    [155] Gracia L, Perez-Vidal C. A new control scheme for visual servoing. International Journal of Control, Automation and Systems, 2009, 7(5):764-776 doi: 10.1007/s12555-009-0509-9
    [156] Fontanelli D, Danesi A, Belo F A W, Salaris P, Bicchi A. Visual servoing in the large. The International Journal of Robotics Research, 2009, 28(6):802-814 doi: 10.1177/0278364908097660
    [157] Kazemi M, Gupta K K, Mehrandezh M. Randomized kinodynamic planning for robust visual servoing. IEEE Transactions on Robotics, 2013, 29(5):1197-1211 doi: 10.1109/TRO.2013.2264865
    [158] Tahri O, Mezouar Y. On visual servoing based on efficient second order minimization. Robotics and Autonomous Systems, 2010, 58(5):712-719 doi: 10.1016/j.robot.2009.11.003
    [159] Hajiloo A, Keshmiri M, Xie W F, Wang T T. Robust online model predictive control for a constrained image-based visual servoing. IEEE Transactions on Industrial Electronics, 2016, 63(4):2242-2250 http://ieeexplore.ieee.org/document/7362013/
    [160] Gao J, Proctor A A, Shi Y, Bradley C. Hierarchical model predictive image-based visual servoing of underwater vehicles with adaptive neural network dynamic control. IEEE Transactions on Cybernetics, 2016, 46(10):2323-2334 doi: 10.1109/TCYB.2015.2475376
    [161] Zhao Q J, Sun Z Q, Sun F C, Zhu J H. Appearance-based robot visual servo via a wavelet neural network. International Journal of Control Automation and Systems, 2008, 6(4):607-612 http://www.ijcas.org/admin/paper/files/IJCAS_v6_n4_pp.607-612.pdf
    [162] Miljković Z, Mitić M, Lazarević M, Babić B. Neural network reinforcement learning for visual control of robot manipulators. Expert Systems with Applications, 2013, 40(5):1721-1736 doi: 10.1016/j.eswa.2012.09.010
    [163] Sadeghzadeh M, Calvert D, Abdullah H A. Self-learning visual servoing of robot manipulator using explanation-based fuzzy neural networks and Q-learning. Journal of Intelligent & Robotic Systems, 2015, 78(1):83-104 doi: 10.1007/s10846-014-0151-5
    [164] Shi H B, Li X S, Hwang K S, Pan W, Xu G J. Decoupled visual servoing with fuzzy Q-learning. IEEE Transactions on Industrial Informatics, 2018, 14(1):241-252 doi: 10.1109/TII.2016.2617464
    [165] Zhao Y M, Xie W F, Liu S N, Wang T T. Neural network-based Image moments for robotic visual servoing. Journal of Intelligent & Robotic Systems, 2015, 78(2):239-256 doi: 10.1007/s10846-014-0065-2
    [166] Jiang P, Bamforth L C A, Feng Z R, Baruch J E F, Chen Y Q. Indirect iterative learning control for a discrete visual servo without a camera-robot model. IEEE Transactions on Systems, Man, and Cybernetics, Part B-Cybernetics, 2007, 37(4):863-876 doi: 10.1109/TSMCB.2007.895355
    [167] Mansard N, Chaumette F. Task sequencing for high-level sensor-based control. IEEE Transactions on Robotics, 2007, 23(1):60-72 doi: 10.1109/TRO.2006.889487
    [168] Larouche B P, Zhu Z H. Autonomous robotic capture of non-cooperative target using visual servoing and motion predictive control. Autonomous Robots, 2014, 37(2):157-167 doi: 10.1007/s10514-014-9383-2
    [169] Tsai C Y, Wong C C, Yu C J, Liu C C, Liu T Y. A hybrid switched reactive-based visual servo control of 5-DOF robot manipulators for pick-and-place tasks. IEEE Systems Journal, 2015, 9(1):119-130 doi: 10.1109/JSYST.2014.2358876
    [170] Wu H Y, Lou L, Chen C C, Hirche S, Kuhnlenz K. Cloud-based networked visual servo control. IEEE Transactions on Industrial Electronics, 2013, 60(2):554-566 doi: 10.1109/TIE.2012.2186775
  • 加载中
计量
  • 文章访问数:  2325
  • HTML全文浏览量:  1098
  • PDF下载量:  2652
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-12-21
  • 录用日期:  2018-04-04
  • 刊出日期:  2018-10-20

目录

    /

    返回文章
    返回