2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

“分数阶广义系统容许性的充分必要条件”一文评论

张雪峰

张雪峰. “分数阶广义系统容许性的充分必要条件”一文评论. 自动化学报, 2020, 46(5): 1061-1062. doi: 10.16383/j.aas.2018.c170539
引用本文: 张雪峰. “分数阶广义系统容许性的充分必要条件”一文评论. 自动化学报, 2020, 46(5): 1061-1062. doi: 10.16383/j.aas.2018.c170539
ZHANG Xue-Feng. Comments on 'Sufficient and Necessary Condition of Admissibility for Fractional Order Singular Systems'. ACTA AUTOMATICA SINICA, 2020, 46(5): 1061-1062. doi: 10.16383/j.aas.2018.c170539
Citation: ZHANG Xue-Feng. Comments on "Sufficient and Necessary Condition of Admissibility for Fractional Order Singular Systems". ACTA AUTOMATICA SINICA, 2020, 46(5): 1061-1062. doi: 10.16383/j.aas.2018.c170539

“分数阶广义系统容许性的充分必要条件”一文评论

doi: 10.16383/j.aas.2018.c170539
详细信息
    作者简介:

    张雪峰   东北大学副教授.主要研究方向为分数阶控制系统. E-mail:zhangxuefeng@mail.neu.edu.cn

Comments on "Sufficient and Necessary Condition of Admissibility for Fractional Order Singular Systems"

More Information
    Author Bio:

    ZHANG Xue-Feng Associate professor at Northeastern University. His research interest covers fractional order control systems

  • 摘要: 《自动化学报》39卷12期的"分数阶奇异系统容许性的充分必要条件"得到了基于线性矩阵不等式的分数阶广义系统容许性充分必要条件.本文给出一个数值反例表明文献[1]中定理1的充分条件结论并不成立, 必要条件也不准确.最后, 给出了修改正确的分数阶广义系统容许性充分必要条件.相比于文献[1]的定理1, 改进后充要条件没有保守性并去除了原文中分数阶广义系统正则性的限制要求.
    Recommended by Associate Editor SUN Chang-Yin
    1)  本文责任编委 孙长银
  • [1] 余瑶, 焦壮, 孙长银.分数阶奇异系统容许性的充分必要条件.自动化学报, 2013, 39(12): 2160-2164 doi: 10.3724/SP.J.1004.2013.02160

    Yu Yao, Jiao Zhuang, Sun Chang-Yin. Sufficient and necessary condition of admissibility for fractional-order singular system. Acta Automatica Sinica, 2013, 39(12): 2160-2164 doi: 10.3724/SP.J.1004.2013.02160
    [2] Matignon D. Stability results for fractional differential equations with applications to control processing. In: Proceedings of the 1996 Computational Engineering in Systems Applications. Lille, France: IEEE-SMC, 1996. 963-968
    [3] Marir S, Chadli M, Bouagada D. A novel approach of admissibility for singular linear continuous-time fractional-order systems. International Journal of Control, Automation and Systems, 2017, 15(2): 959-964 doi: 10.1007/s12555-016-0003-0
    [4] Liu Y C, Cui L, Duan D P. Dynamic output feedback stabilization of singular fractional-order systems. Mathematical Problems in Engineering, 2016, 2016: Article ID 9694780
    [5] Zhang X F. Relationship between integer order systems and fractional order systems and its two applications. IEEE/CAA Journal of Automatica Sinica, 2018, 5(2): 639-643 doi: 10.1109/JAS.2016.7510205
    [6] Wang C H, Li H H, Chen Y Q. $H_\infty$ output feedback control of linear time-invariant fractional-order systems over finite frequency range. IEEE/CAA Journal of Automatica Sinica, 2016, 3(3): 304-310 doi: 10.1109/JAS.2016.7508806
  • 加载中
计量
  • 文章访问数:  1463
  • HTML全文浏览量:  407
  • PDF下载量:  213
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-09-30
  • 录用日期:  2018-02-26
  • 刊出日期:  2020-06-01

目录

    /

    返回文章
    返回