2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

带时变计算时间和计算误差的倒立摆视觉H控制研究

杜大军 占国华 李汪佩 费敏锐 周文举

杜大军, 占国华, 李汪佩, 费敏锐, 周文举. 带时变计算时间和计算误差的倒立摆视觉H∞控制研究. 自动化学报, 2019, 45(2): 334-348. doi: 10.16383/j.aas.2018.c170393
引用本文: 杜大军, 占国华, 李汪佩, 费敏锐, 周文举. 带时变计算时间和计算误差的倒立摆视觉H控制研究. 自动化学报, 2019, 45(2): 334-348. doi: 10.16383/j.aas.2018.c170393
DU Da-Jun, ZHAN Guo-Hua, LI Wang-Pei, FEI Min-Rui, ZHOU Wen-Ju. Research of Visual H∞ Control of Inverted Pendulum With Time-varying Computational Time and Computational Error. ACTA AUTOMATICA SINICA, 2019, 45(2): 334-348. doi: 10.16383/j.aas.2018.c170393
Citation: DU Da-Jun, ZHAN Guo-Hua, LI Wang-Pei, FEI Min-Rui, ZHOU Wen-Ju. Research of Visual H Control of Inverted Pendulum With Time-varying Computational Time and Computational Error. ACTA AUTOMATICA SINICA, 2019, 45(2): 334-348. doi: 10.16383/j.aas.2018.c170393

带时变计算时间和计算误差的倒立摆视觉H控制研究

doi: 10.16383/j.aas.2018.c170393
基金项目: 

国家自然科学基金 61633016

国家自然科学基金 61773253

国家自然科学基金 61473182

上海市科学技术委员会 15JC1401 900

上海市科学技术委员会 14JC1402200

详细信息
    作者简介:

    占国华  上海大学机电工程与自动化学院硕士研究生.主要研究方向为网络化先进控制.E-mail:guohua361108@163.com

    李汪佩   上海大学机电工程与自动化学院硕士研究生.主要研究方向为机器视觉及网络化先进控制.E-mail:lwp15971862501@163.com

    费敏锐  上海大学机电工程与自动化学院教授.主要研究方向为网络化控制系统及实现.E-mail:mrfei@stafi.shu.edu.cn

    周文举   上海大学机电工程与自动化学院特聘研究员.主要研究方向为机器视觉及网络化先进控制.E-mail:zhouwenju2004@126.com

    通讯作者:

    杜大军     上海大学机电工程与自动化学院教授.主要研究方向为机器视觉与网络化先进控制.本文通信作者.E-mail:ddj@shu.edu.cn

Research of Visual H Control of Inverted Pendulum With Time-varying Computational Time and Computational Error

Funds: 

National Natural Science Foundation of China 61633016

National Natural Science Foundation of China 61773253

National Natural Science Foundation of China 61473182

Science and Technology Commission of Shanghai Municipality 15JC1401 900

Science and Technology Commission of Shanghai Municipality 14JC1402200

More Information
    Author Bio:

      Master student at the School of Mechatronics Engineering and Automation, Shanghai University. His main research interest is advanced control for networked control systems

      Master student at the School of Mechatronics Engineering and Automation, Shanghai University. His research interest covers machine vision and advanced control for networked control systems

      Professor at the School of Mechatronics Engineering and Automation, Shanghai University. His research interest covers networked control system and its implementation

      Specially-appointed researcher at the School of Mechatronics Engineering and Automation, Shanghai University. His research interest covers machine vision and advanced control for networked control systems

    Corresponding author: DU Da-Jun   Professor at the School of Mechatronics Engineering and Automation, Shanghai University. His research interest covers machine vision and advanced control for networked control systems. Corresponding author of this paper
  • 摘要: 针对基于视觉传感的倒立摆实时控制系统中,通过每帧图像计算小车位移和摆杆偏角产生的时变计算时间和计算误差直接影响控制系统性能甚至导致系统失稳问题,不同于目前不考虑计算时间和计算误差或将计算时间视为定时滞进行研究倒立摆视觉实时控制方法,本文首先创新设计了新型的倒立摆视觉伺服控制实验平台,然后设计了一种基于事件触发机制的工业图像采集策略,提出了考虑小车和摆杆特征的小车位移和摆杆偏角计算方法,并统计分析了图像处理计算时间和计算误差特性;进一步建立了融合计算时间和计算误差的闭环控制系统模型,理论证明系统的稳定性并建立了反映计算时间与系统稳定性能之间关系,给出了系统对计算误差的H扰动抑制水平γ和控制器设计方法.最后,仿真和实时控制实验验证了所提方法可行且有效.
    1)  本文责任编委 侯增广
  • 图  1  倒立摆视觉伺服控制实验平台结构

    Fig.  1  Scheme of inverted pendulum visual servoing control platform

    图  2  倒立摆视觉伺服控制系统控制框图

    Fig.  2  Control block diagram of inverted pendulum visual servoing control system

    图  3  视觉传感测量过程

    Fig.  3  Process of vision sensing measurement

    图  4  小车和摆杆局部定位

    Fig.  4  Local location of cart and pendulum

    图  5  小车和摆杆边缘信息

    Fig.  5  Edge information of cart and pendulum

    图  6  相机透视投影模型

    Fig.  6  The camera perspective projection model

    图  7  行扫描检测小车位移

    Fig.  7  Cart position is determined using line scan algorithm

    图  8  霍夫变换检测摆杆偏角

    Fig.  8  Pendulum angle is determined using Hough transform

    图  9  计算时间

    Fig.  9  Computational time

    图  10  小车位移计算误差统计

    Fig.  10  Computational error statistics of cart position

    图  11  小车速度计算误差统计

    Fig.  11  Computational error statistics of cart velocity

    图  12  摆杆偏角计算误差统计

    Fig.  12  Computational error statistics of pendulum angle

    图  13  摆杆角速度误差统计

    Fig.  13  Computational error statistics of pendulum angular velocity

    图  14  信号时序图

    Fig.  14  Signal timing diagram

    图  15  实验平台

    Fig.  15  Experimental platform

    图  16  在控制律${K_1}$下的小车位移和摆杆偏角(仿真)

    Fig.  16  Cart position and pendulum angle in controller ${K_1}$ (simulation)

    图  17  在控制律${K_2}$下的小车位移和摆杆偏角(仿真)

    Fig.  17  Cart position and pendulum angle in controller ${K_2}$ (simulation)

    图  18  在控制律${K_1}$下的小车位移和摆杆偏角(实时控制)

    Fig.  18  Cart position and pendulum angle in controller ${K_1}$ (real-time control)

    图  19  不同图像处理计算时间上界$\bar d$的小车位移

    Fig.  19  Cart position in different upper bound of image processing computational time $\bar d$

    图  20  不同图像处理计算时间上界$\bar d$的摆杆偏角

    Fig.  20  Pendulum angle in different upper bound of image processing computational time $\bar d$

    表  1  相机内部参数

    Table  1  Intrinsic parameters of camera

    参数 取值
    $f$ 909.5 pixels
    $d$ 0.9263 m
    ${\alpha _u}$ $1.6241\times 106 $ pixels/m
    ${\alpha _v}$ $1.6241\times106 $ pixels/m
    $s$ 0
    ${u_0}$ 334.85 pixels
    ${v_0}$ 267.46 pixels
    下载: 导出CSV
  • [1] 王瑶为, 邢科新, 马剑, 张文安.直线一级倒立摆的自抗扰控制方法及实现.控制工程, 2017, 24(4):002 http://d.old.wanfangdata.com.cn/Periodical/jczdh201704002

    Wang Yao-Wei, Xing Ke-Xin, Ma Jian, Zhang Wen-An. Implementation and design of active disturbance rejection control for the linear inverted pendulum. Control Engineering of China, 2017, 24(4):002 http://d.old.wanfangdata.com.cn/Periodical/jczdh201704002
    [2] Ronquillo-Lomeli G, Ríos-Moreno G J, Gómez-Espinosa A, Morales-Hernández L A, Perea M T. Nonlinear identification of inverted pendulum system using Volterra polynomials. Mechanics Based Design of Structures and Machines, 2016, 44(1-2):5-15 doi: 10.1080/15397734.2015.1028551
    [3] Li Z J, Zhang Y N. Robust adaptive motion/force control for wheeled inverted pendulums. Automatica, 2010, 46(8):1346-1353 doi: 10.1016/j.automatica.2010.05.015
    [4] Ravichandran M T, Mahindrakar A D. Robust stabilization of a class of underactuated mechanical systems using time scaling and Lyapunov redesign. IEEE Transactions on Industrial Electronics, 2011, 58(9):4299-4313 doi: 10.1109/TIE.2010.2102318
    [5] 王忠杰, 谢璐璐.信息物理融合系统研究综述.自动化学报, 2011, 37 (10):1157-1166 http://www.aas.net.cn/CN/abstract/abstract17604.shtml

    Wang Zhong-Jie, Xie Lu-Lu. Cyber-physical systems:a survey. Acta Automatica Sinica, 2016, 37(10):1157-1166 http://www.aas.net.cn/CN/abstract/abstract17604.shtml
    [6] Bradley J M, Atkins E M. Toward continuous state-space regulation of coupled cyber-physical systems. Proceedings of the IEEE, 2012, 100(1):60-74 doi: 10.1109/JPROC.2011.2161239
    [7] Ge X H, Yang F W, Han Q L. Distributed networked control systems:a brief overview. Information Sciences, 2017, 380:117-131 doi: 10.1016/j.ins.2015.07.047
    [8] 张永立, 程会锋, 李洪兴.三级倒立摆的自动摆起与稳定控制.控制理论与应用, 2011, 28(1):37-45 http://d.old.wanfangdata.com.cn/Periodical/kzllyyy201101005

    Zhang Yong-Li, Cheng Hui-Feng, Li Hong-Xing. The swing-up and stabilization of the triple inverted pendulum. Control Theory and Applications, 2011, 28(1):37-45 http://d.old.wanfangdata.com.cn/Periodical/kzllyyy201101005
    [9] 李雪冰, 马莉, 丁世宏.一类新的二阶滑模控制方法及其在倒立摆控制中的应用.自动化学报, 2015, 41(1):193-202 http://www.aas.net.cn/CN/abstract/abstract18598.shtml

    Li Xue-Bing, Ma Li, Ding Shi-Hong. A new second-order sliding mode control and its application to inverted pendulum. Acta Automatica Sinica, 2015, 41(1):193-202 http://www.aas.net.cn/CN/abstract/abstract18598.shtml
    [10] 武玉强, 朱成龙.车轨长度受限的并行双摆能量控制.控制理论与应用, 2015, 32(9):1254-1260 http://d.old.wanfangdata.com.cn/Periodical/kzllyyy201509015

    Wu Yu-Qiang, Zhu Cheng-Long. Energy control for parallel-type double inverted pendulums with restricted cart rail length. Control Theory and Applications, 2015, 32(9):1254-1260 http://d.old.wanfangdata.com.cn/Periodical/kzllyyy201509015
    [11] Muralidharan V, Mahindrakar A D. Position stabilization and waypoint tracking control of mobile inverted pendulum robot. IEEE Transactions on Control Systems Technology, 2014, 22(6):2360-2367 doi: 10.1109/TCST.2014.2300171
    [12] Huang S H, Pan Y C. Automated visual inspection in the semiconductor industry:a survey. Computers in Industry, 2015, 66:1-10 doi: 10.1016/j.compind.2014.10.006
    [13] 王耀南, 陈铁健, 贺振东, 吴成中.智能制造装备视觉检测控制方法综述.控制理论与应用, 2015, 32(3):273-286 http://d.old.wanfangdata.com.cn/Periodical/kzllyyy201503001

    Wang Yao-Nan, Chen Tie-Jian, He Zhen-Dong, Wu Cheng-Zhong. Review on the machine vision measurement and control technology for intelligent manufacturing equipment. Control Theory and Applications, 2015, 32(3):273-286 http://d.old.wanfangdata.com.cn/Periodical/kzllyyy201503001
    [14] Riggio M, Sandak J, Franke S. Application of imaging techniques for detection of defects, damage and decay in timber structures on-site. Construction and Building Materials, 2015, 101:1241-1252 doi: 10.1016/j.conbuildmat.2015.06.065
    [15] Gao J, Proctor A A, Shi Y, Bradley C. Hierarchical model predictive image-based visual servoing of underwater vehicles with adaptive neural network dynamic control. IEEE Transactions on Cybernetics, 2016, 46(10):2323-2334 doi: 10.1109/TCYB.2015.2475376
    [16] Ye W Q, Li Z J, Yang C G, Sun J J, Su C Y, Lu R Q. Vision-based human tracking control of a wheeled inverted pendulum robot. IEEE Transactions on Cybernetics, 2016, 46(11):2423-2434 doi: 10.1109/TCYB.2015.2478154
    [17] Wang H P, Vasseur C, Koncar V, Chamroo A, Christov N. Modelling and trajectory tracking control of a 2-DOF vision based inverted pendulum. Journal of Control Engineering and Applied Informatics, 2010, 12(3):59-66
    [18] Magana M E, Holzapfel F. Fuzzy-logic control of an inverted pendulum with vision feedback. IEEE Transactions on Education, 1998, 41(2):165-170 doi: 10.1109/13.669727
    [19] Tu Y W, Ho M T. Design and implementation of robust visual servoing control of an inverted pendulum with an FPGA-based image co-processor. Mechatronics, 2011, 21(7):1170-1182 doi: 10.1016/j.mechatronics.2011.07.011
    [20] Kizir S, Ocak H, Bingul Z, Oysu C. Time delay compensated vision based stabilization control of an inverted pendulum. International Journal of Innovative Computing, Information and Control, 2012, 8(12):8133-8145 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cb3b1b8e6f3b7b2de73fe7983a59202d
    [21] Benitez-Morales A, Santos O, Romero H, Ramos-Velasco L E. Suboptimal robust linear visual servoing for a delayed underactuated system. Optimal Control Applications and Methods, 2013, 34(6):696-711 doi: 10.1002/oca.v34.6
    [22] Van Hamme D, Goeman W, Veelaert P, Philips W. Robust monocular visual odometry for road vehicles using uncertain perspective projection. EURASIP Journal on Image and Video Processing, 2015, 2015:10 doi: 10.1186/s13640-015-0065-6
    [23] Canny J. A computational approach to edge detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1986, 8(6):679-698 http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_3d39d0b11988c5f90bf44b10d764f020
    [24] Liu M Q, Zhang X G, Zhang Y L, Lyu S. Calibration algorithm of mobile robot vision camera. International Journal of Precision Engineering and Manufacturing, 2016, 17(1):51-57 doi: 10.1007/s12541-016-0007-y
    [25] Xu Z Z, Shin B S, Klette R. Accurate and robust line segment extraction using minimum entropy with Hough transform. IEEE Transactions on Image Processing, 2015, 24(3):813-822 doi: 10.1109/TIP.2014.2387020
    [26] Xu S Y, Lam J, Zou Y. New results on delay-dependent robust H control for systems with time-varying delays. Automatica, 2006, 42(2):343-348 doi: 10.1016/j.automatica.2005.09.013
    [27] Gao H J, Wu J L, Shi P. Robust sampled-data H control with stochastic sampling. Automatica, 2009, 45(7):1729-1736 doi: 10.1016/j.automatica.2009.03.004
    [28] Yan H C, Qian F F, Zhang H, Yang F W, Guo G. H fault detection for networked mechanical Spring-Mass systems with incomplete information. IEEE Transactions on Industrial Electronics, 2016, 63(9):5622-5631 doi: 10.1109/TIE.2016.2559454
    [29] Jiang X S, Tian X M, Zhang T L, Zhang W H. Quadratic stabilizability and H control of linear discrete-time stochastic uncertain systems. Asian Journal of Control, 2017, 19(1):35-46 doi: 10.1002/asjc.v19.1
    [30] Han Q L. Absolute stability of time-delay systems with sector-bounded nonlinearity. Automatica, 2005, 41(12):2171-2176 doi: 10.1016/j.automatica.2005.08.005
    [31] Peng C, Tian Y C. Delay-dependent robust stability criteria for uncertain systems with interval time-varying delay. Journal of Computational and Applied Mathematics, 2008, 214(2):480-494 doi: 10.1016/j.cam.2007.03.009
  • 加载中
图(20) / 表(1)
计量
  • 文章访问数:  2393
  • HTML全文浏览量:  254
  • PDF下载量:  569
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-07-18
  • 录用日期:  2017-10-20
  • 刊出日期:  2019-02-20

目录

    /

    返回文章
    返回