2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于稀疏表示的视频目标跟踪研究综述

黄宏图 毕笃彦 侯志强 胡长城 高山 查宇飞 库涛

黄宏图, 毕笃彦, 侯志强, 胡长城, 高山, 查宇飞, 库涛. 基于稀疏表示的视频目标跟踪研究综述. 自动化学报, 2018, 44(10): 1747-1763. doi: 10.16383/j.aas.2018.c170209
引用本文: 黄宏图, 毕笃彦, 侯志强, 胡长城, 高山, 查宇飞, 库涛. 基于稀疏表示的视频目标跟踪研究综述. 自动化学报, 2018, 44(10): 1747-1763. doi: 10.16383/j.aas.2018.c170209
HUANG Hong-Tu, BI Du-Yan, HOU Zhi-Qiang, HU Chang-Cheng, GAO Shan, ZHA Yu-Fei, KU Tao. Research of Sparse Representation-based Visual Object Tracking: A Survey. ACTA AUTOMATICA SINICA, 2018, 44(10): 1747-1763. doi: 10.16383/j.aas.2018.c170209
Citation: HUANG Hong-Tu, BI Du-Yan, HOU Zhi-Qiang, HU Chang-Cheng, GAO Shan, ZHA Yu-Fei, KU Tao. Research of Sparse Representation-based Visual Object Tracking: A Survey. ACTA AUTOMATICA SINICA, 2018, 44(10): 1747-1763. doi: 10.16383/j.aas.2018.c170209

基于稀疏表示的视频目标跟踪研究综述

doi: 10.16383/j.aas.2018.c170209
基金项目: 

国家自然科学基金 61773397

国家自然科学基金 61773397

国家自然科学基金 61472442

国家自然科学基金 61473309

详细信息
    作者简介:

    毕笃彦  空军工程大学航空工程学院教授.主要研究方向为图像处理和模式识别.E-mail:biduyan@126.com

    侯志强  空军工程大学信息与导航学院教授, 西安邮电大学计算机学院教授.主要研究方向为模式识别, 计算机视觉, 图像处理, 信息融合.E-mail:hou-zhq@sohu.com

    胡长城  中国人民解放军95972部队工程师.主要研究方向为数据处理.E-mail:h_ccemail@163.com

    高山  空军工程大学航空工程学院讲师.主要研究方向为图像处理.E-mail:gaoshan1114@126.com

    查宇飞  空军工程大学航空工程学院副教授.主要研究方向为计算机视觉和机器学习.E-mail:zhayufei@126.com

    库涛  空军工程大学航空工程学院博士研究生.主要研究方向为视频目标跟踪.E-mail:keltloja@163.com

    通讯作者:

    黄宏图  中国人民解放军95972部队工程师.2016年获空军工程大学信号与信息处理专业工学博士学位.主要研究方向为视频目标跟踪.本文通信作者.E-mail:huanghongtu@sina.cn

Research of Sparse Representation-based Visual Object Tracking: A Survey

Funds: 

National Natural Science Foundation of China 61773397

National Natural Science Foundation of China 61773397

National Natural Science Foundation of China 61472442

National Natural Science Foundation of China 61473309

More Information
    Author Bio:

      Professor at the Aeronautics Engineering College, Air Force Engineering University. His research interest covers image processing and pattern recognition

      Professor at the Information and Navigation Institute, Air Force Engineering University and School of Computer Science and Technology, Xi0an University of Posts and Telecommunications. His research interest covers pattern recognition, computer vision, image processing, and information fusion

      Engineer at 95972 Troops of PLA. His main research interest is data processing

      Lecturer at the Aeronautics Engineering College, Air Force Engineering University. Her main research interest is image processing

      Associate professor at the Aeronautics Engineering College, Air Force Engineering University. His research interest covers computer vision and machine learning

      Ph. D. candidate at the Aeronautics Engineering College, Air Force Engineering University. His main research interest is visual object tracking

    Corresponding author: HUANG Hong-Tu   Engineer at 95972 Troops of PLA. He received his Ph. D. degree of engineering in signal and information processing major from Air Force Engineering University in 2016. His main research interest is visual object tracking. Corresponding author of this paper
  • 摘要: 视频目标跟踪在计算机视觉领域有着广泛应用,由于目标自身和外界环境变化的复杂性和难以预知性,使得复杂场景下鲁棒实时目标跟踪成为一项亟待解决的关键问题.由于视觉信息可以用少量神经元进行稀疏表示,因此稀疏表示已经广泛应用于人脸识别、目标检测和目标跟踪等计算机视觉领域.本文旨在对基于稀疏表示的视频目标跟踪算法进行综述.首先,介绍了基于稀疏表示的视频目标跟踪算法中的字典组成;其次,介绍了稀疏模型的构建及求解算法和模型更新,并对算法复杂度进行了简要分析;然后,对现有公开代码的稀疏表示跟踪算法在测试数据上进行了实验分析,结合算法模型和实验结果对其进行了分析;最后,对基于稀疏表示的视频跟踪算法存在问题进行了讨论,并对未来的研究趋势进行了展望.
    1)  本文责任编委 桑农
  • 图  1  字典构建方法

    Fig.  1  The codebook construction method

    图  2  基于稀疏表示的生成式模型

    Fig.  2  The sparse representation-based generative mode

    图  3  L$_1$跟踪算法框架

    Fig.  3  The L$_1$ tracker framework

    图  4  算法跟踪精度随中心误差阈值的变化曲线

    Fig.  4  The tracker$'$s tracking precision versus center error threshold

    图  5  算法跟踪成功率随重叠率阈值的变化曲线

    Fig.  5  The tracker$'$s success rate versus overlap rate threshold

    表  1  视频跟踪评估基准数据

    Table  1  Summary of some visual tracking evaluation benchmark datasets

    下载: 导出CSV

    表  2  算法简称和论文代码地址

    Table  2  The sparse tracker$'$s abbreviation, paper and code$'$s URL

    算法 论文题目和代码地址
    L$_1$ Robust visual tracking using l1 mimization. In ICCV, 2009.
    http://www.dabi.temple.edu/~hbling/publication-selected.htm
    LSK Robust tracking using local sparse appearance model and k-selection. In CVPR, 2011.
    http://www.uky.edu/~lya227/spt.html
    L1APG Real time robust l1 tracker using accelerated proximal gradient approach. In CVPR, 2012.
    http://www.dabi.temple.edu/~hbling/publication-selected.htm
    ASLA Visual tracking via adaptive structural local sparse appearance model. In CVPR, 2012.
    http://ice.dlut.edu.cn/lu/publications.html
    SCM Robust object tracking via sparsity-based collaborative model. In CVPR, 2012.
    http://ice.dlut.edu.cn/lu/publications.html
    MTT Robust visual tracking via multi-task sparse learning. In CVPR, 2012.
    http://faculty.ucmerced.edu/mhyang/pubs.html
    LRT Low-rank sparse learning for robust visual tracking. In ECCV, 2012.
    http://faculty.ucmerced.edu/mhyang/pubs.html
    CT Real-time compressive tracking. In ECCV, 2012.
    http://www4.comp.polyu.edu.hk/~cslzhang/papers.htm
    DLSR Online discriminative object tracking with local sparse representation. In WACV, 2012.
    http://faculty.ucmerced.edu/mhyang/pubs.html
    SRPCA Online object tracking with sparse prototypes. In TIP, 2013.
    http://ice.dlut.edu.cn/lu/publications.html
    DSSM Visual trcking via discriminative sparse similiarity map. In TIP, 2014.
    http://ice.dlut.edu.cn/lu/publications.html
    SST Structural sparse tracking. In CVPR, 2015.
    http://nlpr-web.ia.ac.cn/mmc/homepage/tzzhang/index.html
    CST In defense of sparse tracking: Circulant sparse tracker. In CVPR, 2016
    http://nlpr-web.ia.ac.cn/mmc/homepage/tzzhang/index.html
    下载: 导出CSV

    表  3  算法跟踪成功率(%)比较

    Table  3  The tracker$'$s success rate (%) comparison

    算法 ASLA SCM CST SST LRT LSK MTT DSSM CT L1APG L$_1$ DLSR SRPCA
    成功率 70.69 68.96 68.20 59.30 59.02 56.09 54.98 45.80 42.29 41.61 35.56 34.22 25.83
    下载: 导出CSV

    表  4  算法单帧平均处理时间比较(ms)

    Table  4  The comparison of tracker$'$s average processing time (ms)

    算法 ASLA SCM CST SST LRT LSK MTT DSSM CT L1APG L$_1$ DLSR SRPCA
    实现环境 MC MC M M M ME M M MC MC MC MC MC
    时间 241 7846 454 450 3152 382 2279 586 12 79 397 23030 249
    下载: 导出CSV

    表  5  基于稀疏表示的视频跟踪算法模型和重叠率比较

    Table  5  The comparison of the sparse representation-based tracker$'$s model and overlap rate mean and std

    算法简称 特征字典 运动模型 搜索方案 匹配模式 模型更新 重叠率均值 重叠率标准差
    ASLA 局部灰度 仿射运动 粒子滤波 生成式 增量学习 0.5860 0.3225
    SCM 局部灰度 仿射运动 粒子滤波 混合式 模板替换 0.5562 0.3436
    CST HOG 仿射运动 粒子滤波 生成式 模板替换 0.5480 0.3063
    LRT 全局灰度 仿射运动 粒子滤波 判别式 模板替换 0.4841 0.3247
    SST 局部灰度 仿射运动 粒子滤波 生成式 模板替换 0.4840 0.3187
    LSK 局部灰度 相似性变换 均值漂移 生成式 加权更新 0.4801 0.3379
    MTT 全局灰度 仿射运动 粒子滤波 生成式 模板替换 0.4623 0.3411
    CT 扩展类haar 平移运动 稠密采样 判别式 Bayes更新 0.3909 0.2850
    DSSM 全局灰度 仿射运动 粒子滤波 判别式 模板替换 0.3818 0.3520
    L1APG 全局灰度 仿射运动 粒子滤波 生成式 模板替换 0.3660 0.3565
    DLSR 局部灰度 仿射运动 粒子滤波 判别式 SVM更新 0.3116 0.3414
    L$_1$ 全局灰度 仿射运动 粒子滤波 生成式 模板替换 0.3068 0.3687
    SRPCA 全局PCA 仿射运动 粒子滤波 生成式 增量学习 0.2412 0.3321
    下载: 导出CSV
  • [1] Li X, Hu W M, Shen C H, Zhang Z F, Dick A, Van Den Hengel A. A survey of appearance models in visual object tracking. ACM Transactions on Intelligent Systems and Technology, 2013, 4(4):Article No.58 http://d.old.wanfangdata.com.cn/OAPaper/oai_arXiv.org_1303.4803
    [2] 王栋. 基于线性表示模型的在线视觉跟踪算法研究博士论文. 大连理工大学, 中国, 2013. http://cdmd.cnki.com.cn/Article/CDMD-10141-1014154759.htm

    Wang D. Research of online visual tracking algorithms based on linear representation models [Ph.D. dissertation], Dalian University of Technology, China, 2013. http://cdmd.cnki.com.cn/Article/CDMD-10141-1014154759.htm
    [3] Haritaoglu I, Harwood D, Davis L S. W.4:real-time surveillance of people and their activities. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(8):809-830 doi: 10.1109/34.868683
    [4] Rios-Cabrera R, Tuytelaars T, Van Gool L. Efficient multi-camera vehicle detection, tracking, and identification in a tunnel surveillance application. Computer Vision and Image Understanding, 2012, 116(6):742-753 doi: 10.1016/j.cviu.2012.02.006
    [5] 卢莉萍. 目标跟踪算法与检测处理技术研究博士论文. 南京理工大学, 2012.

    Lu L P. Study on targets tracking algorithm and detection processing technology [Ph.D. dissertation], Nanjing University of Science and Technology, China, 2012.
    [6] Lucas B D, Kanade T. An iterative image registration technique with an application to stereo vision. In:Proceedings of the 7th International Joint Conference on Artificial Intelligence. Vancouver, British Columbia, Canada:ACM, 1981. 674-679 https://wenku.baidu.com/view/c7876662caaedd3383c4d307.html
    [7] Wu Y, Lim J, Yang M H. Online object tracking:a benchmark. In:Proceedings of the 2013 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Portland, Oregon, USA:IEEE, 2013. 2411-2418 https://wenku.baidu.com/view/510c17fd27284b73f24250a0.html
    [8] Chu D M, Smeulders A W M. Thirteen hard cases in visual tracking. In:Proceedings of the 7th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS). Sydney, Australia:IEEE. 2010. 103-110
    [9] 匡金骏. 基于稀疏表示的图像分类与目标跟踪研究[博士论文]. 重庆大学, 2013. http://cdmd.cnki.com.cn/Article/CDMD-10611-1013043071.htm

    Kuang J J. Study on image classification and target tracking based on sparse representation [Ph.D. dissertation], Chongqing University, China, 2013. http://cdmd.cnki.com.cn/Article/CDMD-10611-1013043071.htm
    [10] 练秋生, 石保顺, 陈书贞.字典学习模型、算法及其应用研究进展.自动化学报, 2015, 41(2):240-260 http://www.aas.net.cn/CN/abstract/abstract18604.shtml

    Lian Qiu-Sheng, Shi Bao-Shun, Chen Shu-Zhen. Research advances on dictionary learning models, algorithms and applications. Acta Automatica Sinica, 2015, 41(2):240-260 http://www.aas.net.cn/CN/abstract/abstract18604.shtml
    [11] Donoho D L. Compressed sensing. IEEE Transactions on Information Theory, 2006, 52(4):1289-1306 doi: 10.1109/TIT.2006.871582
    [12] Olshausen B A, Field D J. Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature, 1996, 381(6583):607-609 doi: 10.1038/381607a0
    [13] Olshausen B A, Field D J. Sparse coding with an overcomplete basis set:a strategy employed by V1? Vision Research, 1997, 37(23):3311-3325 doi: 10.1016/S0042-6989(97)00169-7
    [14] Wright J, Yang A Y, Ganesh A, Sastry S S, Ma Y. Robust face recognition via sparse representation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 31(2):210-227 doi: 10.1109/TPAMI.2008.79
    [15] Oja E, Hyvärinen A, Hoyer P. Image feature extraction and denoising by sparse coding. Pattern Analysis & Applications, 1999, 2(2):104-110 doi: 10.1007/s100440050021
    [16] Yu N N, Qiu T S, Bi F, Wang A Q. Image features extraction and fusion based on joint sparse representation. IEEE Journal of Selected Topics in Signal Processing, 2011, 5(5):1074-1082 doi: 10.1109/JSTSP.2011.2112332
    [17] Li X H, Lu H C, Zhang L H, Ruan X, Yang M H. Saliency detection via dense and sparse reconstruction. In:Proceedings of the 2013 IEEE International Conference on Computer Vision (ICCV). Sydney, Australia:IEEE, 2013. 2976-2983 https://www.cv-foundation.org/openaccess/content_iccv_2013/papers/Li_Saliency_Detection_via_2013_ICCV_paper.pdf
    [18] Yuan X T, Liu X B, Yan S C. Visual classification with multitask joint sparse representation. IEEE Transactions on Image Processing, 2012, 21(10):4349-4360 doi: 10.1109/TIP.2012.2205006
    [19] Wright J, Ma Y, Mairal J, Sapiro G, Huang T S, Yan S C. Sparse representation for computer vision and pattern recognition. Proceedings of the IEEE, 2010, 98(6):1031-1044 doi: 10.1109/JPROC.2010.2044470
    [20] Mei X, Ling H B. Robust visual tracking using l1 minimization. In:Proceedings of the 12th IEEE International Conference on Computer Vision (ICCV). Kyoto, Japan:IEEE, 2009. 1436-1443 http://www.doc88.com/p-2856613370793.html
    [21] Zhang S P, Yao H X, Sun X, Lu X S. Sparse coding based visual tracking:review and experimental comparison. Pattern Recognition, 2013, 46(7):1772-1788 doi: 10.1016/j.patcog.2012.10.006
    [22] Wu Y, Lim J, Yang M H. Object tracking benchmark. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9):1834-1848 doi: 10.1109/TPAMI.2014.2388226
    [23] 石光明, 刘丹华, 高大化, 刘哲, 林杰, 王良君.压缩感知理论及其研究进展.电子学报, 2009, 37(5):1070-1081 doi: 10.3321/j.issn:0372-2112.2009.05.028

    Shi Guang-Ming, Liu Dan-Hua, Gao Da-Hua, Liu Zhe, Lin Jie, Wang Liang-Jun. Advances in theory and application of compressed sensing. Acta Electronica Sinica, 2009, 37(5):1070-1081 doi: 10.3321/j.issn:0372-2112.2009.05.028
    [24] Mei X, Ling H B. Robust visual tracking and vehicle classification via sparse representation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(11):2259-2272 doi: 10.1109/TPAMI.2011.66
    [25] Peng Y G, Ganesh A, Wright J, Xu W L, Ma Y. RASL:robust alignment by sparse and low-rank decomposition for linearly correlated images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(11):2233-2246 doi: 10.1109/TPAMI.2011.282
    [26] Wu Y, Blasch E, Chen G, Bai L, Ling H B. Multiple source data fusion via sparse representation for robust visual tracking. In:Proceedings of the 14th IEEE International Conference on Information Fusion (FUSION). Barcelona, Spain:IEEE, 2011. 1-8 https://ieeexplore.ieee.org/document/5977451/authors#authors
    [27] Han Z J, Jiao J B, Zhang B C, Ye Q X, Liu J Z. Visual object tracking via sample-based Adaptive Sparse Representation (AdaSR). Pattern Recognition, 2011, 44(9):2170-2183 doi: 10.1016/j.patcog.2011.03.002
    [28] Tzimiropoulos G, Zafeiriou S, Pantic M. Sparse representations of image gradient orientations for visual recognition and tracking. In:Proceedings of the 2011 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). Colorado Springs, CO, USA:IEEE, 2011. 26-33 https://ieeexplore.ieee.org/document/5981809
    [29] Wang Q, Chen F, Yang J M, Xu W L, Yang M H. Transferring visual prior for online object tracking. IEEE Transactions on Image Processing, 2012, 21(7):3296-3305 doi: 10.1109/TIP.2012.2190085
    [30] Zhang T Z, Jia K, Xu C S, Ma Y, Ahuja N. Partial occlusion handling for visual tracking via robust part matching. In:Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Columbus, Ohio, USA:IEEE, 2014. 1258-1265 http://nlpr-web.ia.ac.cn/mmc/homepage/tzzhang/opmt.html
    [31] Hong Z B, Mei X, Prokhorov D, Tao D C. Tracking via robust multi-task multi-view joint sparse representation. In:Proceedings of the 2013 IEEE International Conference on Computer Vision (ICCV). Sydney, NSW, Australia:IEEE, 2013. 649-656 https://ieeexplore.ieee.org/document/6751190/
    [32] Zhang X Q, Li W, Hu W M, Ling H B, Maybank S. Block covariance based l1 tracker with a subtle template dictionary. Pattern Recognition, 2013, 46(7):1750-1761 doi: 10.1016/j.patcog.2012.08.015
    [33] Hu W M, Li W, Zhang X Q, Maybank S. Single and multiple object tracking using a multi-feature joint sparse representation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(4):816-833 doi: 10.1109/TPAMI.2014.2353628
    [34] Mei X, Ling H B, Wu Y, Blasch E P, Bai L. Efficient minimum error bounded particle resampling L1 tracker with occlusion detection. IEEE Transactions on Image Processing, 2013, 22(7):2661-2675 doi: 10.1109/TIP.2013.2255301
    [35] Bao C L, Wu Y, Ling H B, Ji H. Real time robust L1 tracker using accelerated proximal gradient approach. In:Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Providence, Rhode Island, USA:IEEE, 2012. 1830-1837 https://wenku.baidu.com/view/b03cc272fe4733687e21aa65.html
    [36] Chen F, Wang Q, Wang S, Zhang W D, Xu W L. Object tracking via appearance modeling and sparse representation. Image and Vision Computing, 2011, 29(11):787-796 doi: 10.1016/j.imavis.2011.08.006
    [37] Bai T X, Li Y F. Robust visual tracking with structured sparse representation appearance model. Pattern Recognition, 2012, 45(6):2390-2404 doi: 10.1016/j.patcog.2011.12.004
    [38] Liu B Y, Yang L, Huang J Z, Meer P, Gong L G, Kulikowski C. Robust and fast collaborative tracking with two stage sparse optimization. In:Proceedings of the 11th European Conference on Computer Vision (ECCV). Crete, Greece:Springer, 2010. 624-637 doi: 10.1007%2F978-3-642-15561-1_45
    [39] Jia X, Lu H C, Yang M H. Visual tracking via adaptive structural local sparse appearance model. In:Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Providence, Rhode Island, USA:IEEE, 2012. 1822-1829 https://ieeexplore.ieee.org/document/6247880
    [40] Jia X, Lu H C, Yang M H. Visual tracking via coarse and fine structural local sparse appearance models. IEEE Transactions on Image Processing, 2016, 25(10):4555-4564 doi: 10.1109/TIP.2016.2592701
    [41] Zhong W, Lu H C, Yang M H. Robust object tracking via sparsity-based collaborative model. In:Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Providence, Rhode Island, USA:IEEE, 2012. 1838-1845 http://faculty.ucmerced.edu/mhyang/papers/cvpr12b.pdf
    [42] Zhong W, Lu H C, Yang M H. Robust object tracking via sparse collaborative appearance model. IEEE Transactions on Image Processing, 2014, 23(5):2356-2368 doi: 10.1109/TIP.2014.2313227
    [43] Li H X, Shen C H, Shi Q F. Real-time visual tracking using compressive sensing. In:Proceedings of the 2011 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Colorado Springs, CO, USA:IEEE, 2011. 1305-1312 https://ieeexplore.ieee.org/document/5995483
    [44] Zhuang B H, Lu H C, Xiao Z Y, Wang D. Visual tracking via discriminative sparse similarity map. IEEE Transactions on Image Processing, 2014, 23(4):1872-1881 doi: 10.1109/TIP.2014.2308414
    [45] Wang D, Lu H C, Bo C J. Online visual tracking via two view sparse representation. IEEE Signal Processing Letters, 2014, 21(9):1031-1034 doi: 10.1109/LSP.2014.2322389
    [46] Lee H, Battle A, Raina R, Ng A Y. Efficient sparse coding algorithms. In:Proceedings of the 19th International Conference on Neural Information Processing Systems. Vancouver, British Columbia, Canada:ACM, 2006. 801-808 https://papers.nips.cc/paper/2979-efficient-sparse-coding-algorithms.pdf
    [47] Yang A Y, Sastry S S, Ganesh A, Ma Y. Fast $\ell$1-minimization algorithms and an application in robust face recognition:a review. In:Proceedings of the 17th IEEE International Conference on Image Processing (ICIP). Hong Kong, China:IEEE, 2010. 1849-1852 https://www2.eecs.berkeley.edu/Pubs/TechRpts/2010/EECS-2010-13.html
    [48] 胡正平, 李静.基于低秩子空间恢复的联合稀疏表示人脸识别算法.电子学报, 2013, 41(5):987-991 doi: 10.3969/j.issn.0372-2112.2013.05.024

    Hu Zheng-Ping, Li Jing. Face recognition of joint sparse representation based on low-rank subspace recovery. Acta Electronica Sinica, 2013, 41(5):987-991 doi: 10.3969/j.issn.0372-2112.2013.05.024
    [49] Kim S J, Koh K, Lustig M, Boyd S, Gorinevsky D. An interior-point method for large-scale $\ell$1-regularized least squares. IEEE Journal of Selected Topics in Signal Processing, 2007, 1(4):606-617 doi: 10.1109/JSTSP.2007.910971
    [50] Yan J C, Tong M L. Weighted sparse coding residual minimization for visual tracking. In:Proceedings of the 2011 IEEE International Conference on Visual Communications and Image Processing (VCIP). Tainan, China:IEEE, 2011. 1-4 https://ieeexplore.ieee.org/document/6115919
    [51] Wang D, Lu H C, Yang M H. Online object tracking with sparse prototypes. IEEE Transactions on Image Processing, 2013, 22(1):314-325 doi: 10.1109/TIP.2012.2202677
    [52] Pan J S, Lim J W, Su Z X, Yang M H. L0-regularized object representation for visual tracking. In:Proceedings of the 2014 British Machine Vision Conference (BMVC). Nottingham, England:BMVA Press, 2014. 1-12 http://www.bmva.org/bmvc/2014/papers/paper077/index.html
    [53] Shen Z W, Toh K C, Yun S. An accelerated proximal gradient algorithm for frame-based image restoration via the balanced approach. SIAM Journal on Imaging Sciences, 2011, 4(2):573-596 doi: 10.1137/090779437
    [54] Lu X Q, Yuan Y, Yan P K. Robust visual tracking with discriminative sparse learning. Pattern Recognition, 2013, 46(7):1762-1771 doi: 10.1016/j.patcog.2012.11.016
    [55] Zhang T Z, Ghanem B, Xu C S, Ahuja N. Object tracking by occlusion detection via structured sparse learning. In:Proceedings of the 2013 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). Portland, Oregon, USA:IEEE, 2013. 1033-1040
    [56] Zhang T Z, Ghanem B, Liu S, Ahuja N. Robust visual tracking via multi-task sparse learning. In:Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Providence, Rhode Island, USA:IEEE, 2012. 2042-2049 https://ieeexplore.ieee.org/document/6247908
    [57] Zhang T Z, Ghanem B, Liu S, Ahuja N. Robust visual tracking via structured multi-task sparse learning. International Journal of Computer Vision, 2013, 101(2):367-383 doi: 10.1007/s11263-012-0582-z
    [58] Chen X, Pan W K, Kwok J T, Carbonell J G. Accelerated gradient method for multi-task sparse learning problem. In:Proceedings of the 9th IEEE International Conference on Data Mining. Miami, FL, USA:IEEE, 2009. 746-751
    [59] Bai Y C, Tang M. Object tracking via robust multitask sparse representation. IEEE Signal Processing Letters, 2014, 21(8):909-913 doi: 10.1109/LSP.2014.2320291
    [60] Hu H W, Ma B, Jia Y D. Multi-task l0 gradient minimization for visual tracking. Neurocomputing, 2015, 154:41-49 doi: 10.1016/j.neucom.2014.12.021
    [61] Liu B Y, Huang J Z, Yang L, Kulikowsk C. Robust tracking using local sparse appearance model and k-selection. In:Proceedings of the 2011 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Colorado Springs, CO, USA:IEEE, 2011. 1313-1320 https://ieeexplore.ieee.org/document/5995730
    [62] Liu B Y, Huang J Z, Kulikowski C, Yang L. Robust visual tracking using local sparse appearance model and K-selection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(12):2968-2981 doi: 10.1109/TPAMI.2012.215
    [63] Wang Q, Chen F, Xu W L, Yang M H. Online discriminative object tracking with local sparse representation. In:Proceedings of the 2012 IEEE Workshop on the Applications of Computer Vision (WACV). Breckenridge, Colorado, USA:IEEE, 2012. 425-432 https://ieeexplore.ieee.org/document/6162999
    [64] Zhang T Z, Ghanem B, Liu S, Ahuja N. Low-rank sparse learning for robust visual tracking. In:Proceedings of the 12th European Conference on Computer Vision (ECCV). Firenze, Italy:Springer, 2012. 470-484 doi: 10.1007/978-3-642-33783-3_34
    [65] Zhang T Z, Liu S, Ahuja N, Yang M H, Ghanem B. Robust visual tracking via consistent low-rank sparse learning. International Journal of Computer Vision, 2015, 111(2):171-190 doi: 10.1007/s11263-014-0738-0
    [66] Zou H, Hastie T. Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society:Series B (Statistical Methodology), 2005, 67(2):301-320 doi: 10.1111/rssb.2005.67.issue-2
    [67] 向馗, 李炳南.主元分析中的稀疏性.电子学报, 2012, 40(12):2525-2532 http://d.old.wanfangdata.com.cn/Periodical/dianzixb201212027

    Xiang Kui, Li Bing-Nan. Sparsity in principal component analysis:a survey. Acta Electronica Sinica, 2012, 40(12):2525-2532 http://d.old.wanfangdata.com.cn/Periodical/dianzixb201212027
    [68] 付光辉. 高维的强相关数据的模型选择[博士论文]. 中南大学, 2011. http://cdmd.cnki.com.cn/Article/CDMD-10533-1011177901.htm

    Fu G H. Model selection for analysizing high-dimensional, strongly correlated data [Ph.D. dissertation], Central South University, China, 2011. http://cdmd.cnki.com.cn/Article/CDMD-10533-1011177901.htm
    [69] Ross D A, Lim J, Lin R S, Yang M H. Incremental learning for robust visual tracking. International Journal of Computer Vision, 2008, 77(1-3):125-141 doi: 10.1007/s11263-007-0075-7
    [70] Zarezade A, Rabiee H R, Soltani-Farani A, Khajenezhad A. Patchwise joint sparse tracking with occlusion detection. IEEE Transactions on Image Processing, 2014, 23(10):4496-4510 doi: 10.1109/TIP.2014.2346029
    [71] Huang H T, Bi D Y, Zha Y F, Ma S P, Gao S, Liu C. Robust visual tracking based on product sparse coding. Pattern Recognition Letters, 2015, 56:52-59 doi: 10.1016/j.patrec.2015.01.014
    [72] K Koh, S Kim, S Boyd. l1_ls:Simple Matlab Solver for l1-regularized Least Squares Problems [Online], available:https://web.stanford.edu/~boyd/software.html, October 8, 2018.
    [73] Kristan M, Pflugfelder R, Leonardis A, Matas J, Porikli F, Čehovin L, et al. The visual object tracking VOT2013 challenge results. In:Proceedings of the 2013 IEEE International Conference on Computer Vision Workshops (ICCVW). Sydney, Australia:IEEE, 2013. 98-111
    [74] Song S R, Xiao J X. Tracking revisited using RGBD camera:unified benchmark and baselines. In:Proceedings of the 2013 IEEE International Conference on Computer Vision (ICCV). Sydney, Australia:IEEE, 2013. 233-240 https://www.cv-foundation.org/openaccess/content_iccv_2013/papers/Song_Tracking_Revisited_Using_2013_ICCV_paper.pdf
    [75] Smeulders A W M, Chu D M, Cucchiara R, Calderara S, Dehghan A, Shah M. Visual tracking:an experimental survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 36(7):1442-1468 doi: 10.1109/TPAMI.2013.230
    [76] Li A N, Lin M, Wu Y, Yang M H, Yan S C. NUS-PRO:a new visual tracking challenge. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 38(2):335-349 doi: 10.1109/TPAMI.2015.2417577
    [77] Kristan M, Pflugfelder R, Leonardis A, Matas J, Čehovin L, Nebehay G, Vojíř T, Fernández G, Lukežič A, Dimitriev A, Petrosino A, Saffari A, Li B, Chan C S, Heng C, Ward D, Kearney D, Monekosso D, Karaimer H C, Rabiee H R, Zhu J K, Gao J, Xiao J J, Zhang J G, Xing J L, Huang K Q, Lebeda K, Cao L J, Maresca M E, Lim M K, El Helw M, Felsberg M, Remagnino P, Bowden R, Goecke R, Stolkin R, Lim S Y, Maher S, Poullot S, Wong S, Satoh S, Chen W H, Hu W M, Zhang X Q, Li Y, Niu Z H. The visual object tracking VOT2014 challenge results. In:Proceedings of the 13th European Conference on Computer Vision Workshops (ECCVW). Zurich, Switzerland:Springer, 2014. 191-217 http://votchallenge.net/vot2014/download/vot_2014_paper.pdf
    [78] Cehovin L, Kristan M, Leonardis A. Is my new tracker really better than yours? In:Proceedings of the 2014 IEEE Winter Conference on Applications of Computer Vision (WACV). Steamboat Springs, Colorado, USA:IEEE, 2014. 540-547 https://www.researchgate.net/profile/Luka_Cehovin/publication/269299898_Is_my_new_tracker_really_better_than_yours/links/5506b4960cf24cee3a05e45f.pdf?inViewer=0&origin=publication_detail&pdfJsDownload=0
    [79] Pang Y, Ling H B. Finding the best from the second bests-inhibiting subjective bias in evaluation of visual tracking algorithms. In:Proceedings of the 2013 IEEE International Conference on Computer Vision (ICCV). Sydney, Australia:IEEE, 2013. 2784-2791 https://www.cv-foundation.org/openaccess/content_iccv_2013/papers/Pang_Finding_the_Best_2013_ICCV_paper.pdf
    [80] SanMiguel J C, Cavallaro A, Martínez J M. Adaptive online performance evaluation of video trackers. IEEE Transactions on Image Processing, 2012, 21(5):2812-2823 doi: 10.1109/TIP.2011.2182520
    [81] Everingham M, Van Gool L, Williams C K I, Winn J, Zisserman A. The pascal visual object classes (VOC) challenge. International Journal of Computer Vision, 2010, 88(2):303-338 doi: 10.1007/s11263-009-0275-4
    [82] Nam H, Han B. Learning multi-domain convolutional neural networks for visual tracking. In:Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas, Nevada, USA:IEEE, 2016. 4293-4302 https://arxiv.org/pdf/1510.07945.pdf
    [83] Ning J F, Yang J M, Jiang S J, Zhang L, Yang M H. Object tracking via dual linear structured SVM and explicit feature map. In:Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas, Nevada, USA:IEEE, 2016. 4266-4274 https://eng.ucmerced.edu/people/jyang44/papers/cvpr16_tracking.pdf
    [84] Valmadre J, Bertinetto L, Henriques J F, Vedaldi A, Torr P H S. End-to-end representation learning for correlation filter based tracking. arXiv:1704.06036, 2017. http://openaccess.thecvf.com/content_cvpr_2017/papers/Valmadre_End-To-End_Representation_Learning_CVPR_2017_paper.pdf
    [85] Zhang T Z, Liu S, Xu C S, Yan S C, Ghanem B, Ahuja N, Yang M H. Structural sparse tracking. In:Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Boston, Massachusetts, USA:IEEE, 2015. 150-158
    [86] 荆楠, 毕卫红, 胡正平, 王林.动态压缩感知综述.自动化学报, 2015, 41(1):22-37 http://www.aas.net.cn/CN/abstract/abstract18580.shtml

    Jing Nan, Bi Wei-Hong, Hu Zheng-Ping, Wang Lin. A survey on dynamic compressed sensing. Acta Automatica Sinica, 2015, 41(1):22-37 http://www.aas.net.cn/CN/abstract/abstract18580.shtml
    [87] Zhang T Z, Bibi A, Ghanem B. In defense of sparse tracking:circulant sparse tracker. In:Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas, Nevada, USA:IEEE, 2016. 3880-3888 https://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Zhang_In_Defense_of_CVPR_2016_paper.pdf
    [88] Bibi A, Itani H, Ghanem B. FFTLasso:large-scale LASSO in the Fourier domain. In:Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu, Hawaii, USA:IEEE, 2017. 3820-3829 https://ivul.kaust.edu.sa/Documents/Publications/2017/FFTLasso%20Large-Scale%20LASSO%20in%20the%20Fourier%20Domain.pdf
  • 加载中
图(5) / 表(5)
计量
  • 文章访问数:  3025
  • HTML全文浏览量:  839
  • PDF下载量:  1611
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-04-19
  • 录用日期:  2017-09-23
  • 刊出日期:  2018-10-20

目录

    /

    返回文章
    返回