2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

数据驱动的浮选过程运行反馈解耦控制方法

姜艺 范家璐 贾瑶 柴天佑

姜艺, 范家璐, 贾瑶, 柴天佑. 数据驱动的浮选过程运行反馈解耦控制方法. 自动化学报, 2019, 45(4): 759-770. doi: 10.16383/j.aas.2018.c170552
引用本文: 姜艺, 范家璐, 贾瑶, 柴天佑. 数据驱动的浮选过程运行反馈解耦控制方法. 自动化学报, 2019, 45(4): 759-770. doi: 10.16383/j.aas.2018.c170552
JIANG Yi, FAN Jia-Lu, JIA Yao, CHAI Tian-You. Data-driven Flotation Process Operational Feedback Decoupling Control. ACTA AUTOMATICA SINICA, 2019, 45(4): 759-770. doi: 10.16383/j.aas.2018.c170552
Citation: JIANG Yi, FAN Jia-Lu, JIA Yao, CHAI Tian-You. Data-driven Flotation Process Operational Feedback Decoupling Control. ACTA AUTOMATICA SINICA, 2019, 45(4): 759-770. doi: 10.16383/j.aas.2018.c170552

数据驱动的浮选过程运行反馈解耦控制方法

doi: 10.16383/j.aas.2018.c170552
基金项目: 

国家自然科学基金 61304028

国家自然科学基金 61533015

中央高校基本科研专项资金 N160804001

国家自然科学基金 61333012

详细信息
    作者简介:

    姜艺  东北大学流程工业综合自动化国家重点实验室博士研究生.2016年获得东北大学控制理论与控制工程硕士学位.主要研究方向为工业过程运行控制, 网络控制, 自适应动态规划, 强化学习.E-mail:JY369356904@163.com

    贾瑶  东北大学流程工业综合自动化国家重点实验室博士研究生.主要研究方向为复杂工业过程控制理论及技术.E-mail:jiayaoneu@163.com

    柴天佑  中国工程院院士, 东北大学教授, IEEEFellow, IFAC Fellow.1985年获得东北大学博士学位.主要研究方向为自适应控制, 智能解耦控制, 流程工业综台自动化理论、方法与技术.E-mail:tychai@mail.neu.edu.cn

    通讯作者:

    范家璐   东北大学流程工业综合自动化国家重点实验室副教授.2011年获得浙江大学控制科学与工程系博士学位(与美国宾夕法尼亚州立大学联合培养).主要研究方向为工业过程运行控制, 工业无线传感器网络与移动社会网络.本文通信作者.E-mail:jlfan@mail.neu.edu.cn

Data-driven Flotation Process Operational Feedback Decoupling Control

Funds: 

National Natural Science Foundations of China 61304028

National Natural Science Foundations of China 61533015

the Fundamental Research Funds for the Central Universities N160804001

National Natural Science Foundations of China 61333012

More Information
    Author Bio:

      Ph. D. candidate at the State Key Laboratory of Synthetical Automation for Process Industries, Northeastern University. He received his master degree in control theory and engineering from Northeastern University in 2016. His research interest covers industrial process operational control, networked control, adaptive dynamic programming, and reinforcement learning

     Ph. D. candidate at the State Key Laboratory of Synthetical Automation for Process Industries, Northeastern University. His research interest covers process control theory and technology for complex industry process

      Academician of Chinese Academy of Engineering, professor at Northeastern University, IEEE Fellow, IFAC Fellow. He received his Ph.D. degree from Northeastern University in 1985. His research interest covers adaptive control, intelligent decoupling control, and integrated automation theory, method and technology of industrial process

    Corresponding author: FAN Jia-Lu   Associate professor at the State Key Laboratory of Synthetical Automation for Process Industries, Northeastern University. She received her Ph. D. degree from Zhejiang University in 2011. She was a visiting scholar with the Pennsylvania State University during 2009~ 2010. Her research interest covers networked operational control, industrial wireless sensor networks, and mobile social networks. Corresponding author of this paper
  • 摘要: 浮选过程是利用矿物本身的亲水或疏气性质或经药剂处理得到的亲水或疏气性质进行矿物分离的物理过程.本文通过建立以矿浆液位和矿浆流量为输入,以浮选过程的精矿品位与尾矿品位为输出的多变量、强耦合、非线性、时变的运行过程模型,利用未建模动态前一拍可测的特点,提出了包括矿物品位运行过程控制器驱动模型、PID控制器、反馈解耦控制器、未建模动态补偿器的数据驱动的一步最优未建模动态补偿PID解耦控制方法,实现了消除稳态误差、静态解耦与未建模动态的补偿,通过浮选过程运行反馈控制仿真实验验证了本文所提方法的有效性.
    1)  本文责任编委  侯忠生
  • 图  1  单浮选槽原理图

    Fig.  1  Schematic diagram of single flotation cell

    图  2  数据驱动一步最优未建模动态补偿PID解耦控制结构图

    Fig.  2  Structure diagram of data driven one-step optimal unmodeled dynamic compensation PID decoupling control

    图  3  线性模型下PID解耦控制的矿物品位跟踪曲线

    Fig.  3  Ore grade tracking curve with PID decoupling control under linear model

    图  4  线性模型下PID解耦控制的控制输入

    Fig.  4  Control input curve with PID decoupling control under linear model

    图  5  线性模型下模型预测控制控制的矿物品位跟踪曲线

    Fig.  5  Ore grade tracking curve with MPC under linear model

    图  6  线性模型下模型预测控制的控制输入

    Fig.  6  Control input curve with MPC under linear model

    图  7  参数扰动曲线

    Fig.  7  Parameter disturbance curve

    图  8  非线性模型下数据驱动一步最优未建模动态补偿的PID解耦控制的矿物品位跟踪曲线

    Fig.  8  Ore grade tracking curve with data driven one step optimal unmolded dynamic compensation PID decoupling control under nonlinear model

    图  9  非线性模型下数据驱动一步最优未建模动态补偿的PID解耦控制的控制输入

    Fig.  9  Control input curve with data driven one step optimal unmolded dynamic compensation PID decoupling control under nonlinear model

    图  10  未建模动态的值

    Fig.  10  Value of unmolded dynamic

    图  11  非线性模型下模型预测控制的矿物品位跟踪曲线

    Fig.  11  Ore grade tracking curve with MPC under nonlinear model

    图  12  非线性模型下模型预测控制的控制输入

    Fig.  12  Control input curve with MPC under nonlinear model

    表  1  浮选过程符号表

    Table  1  Flotation process symbol table

    符号 物理含义
    $k_p^1$ 黄铜矿浮选率
    $k_e^1$ 黄铜矿排放率
    $g_{a}$ 原矿浆黄铜矿品位
    $X_a^2$ 脉石矿浆浓度
    $H$ 浮选槽高度
    $L_{cu}$ 黄铜矿矿物品位
    $g_{cp}^1$ 黄铜矿浆的
    黄铜矿品位
    $k_p^2$ 脉石浮选率
    $k_e^2$ 脉石排放率
    $X_a^1$ 黄铜矿浆浓度
    $A$ 浮选槽底面积
    ${q_T}$ 尾矿流量
    ${q_c}$ 精矿流量
    $g_{cp}^2$ 脉石矿浆的
    黄铜矿品位
    下载: 导出CSV

    表  2  对比实验评价指标

    Table  2  Performance index of comparison experiment

    IAE MSE
    本文$r_1$ 0.2078 $3.3073\times10^{-5}$
    本文$r_2$ 0.1803 $2.396\times10^{-5}$
    MPC $r_1$ 18.1797 0.0601
    MPC $r_2$ 37.4461 0.2563
    下载: 导出CSV
  • [1] 柴天佑.复杂工业过程运行优化与反馈控制.自动化学报, 2013, 39(11):1744-1757 http://www.aas.net.cn/CN/abstract/abstract18214.shtml

    Chai Tian-You. Operational optimization and feedback control for complex industrial processes. Acta Automatica Sinica, 2013, 39(11):1744-1757 http://www.aas.net.cn/CN/abstract/abstract18214.shtml
    [2] 范家璐, 姜艺, 柴天佑.无线网络环境下工业过程运行反馈控制方法.自动化学报, 2016, 42(8):1166-1174 http://www.aas.net.cn/CN/abstract/abstract18906.shtml

    Fan Jia-Lu, Jiang Yi, Chai Tian-You. Operational feedback control of industrial processes in a wireless network environment. Acta Automatica Sinica, 2016, 42(8):1166-1174 http://www.aas.net.cn/CN/abstract/abstract18906.shtml
    [3] Chai T Y, Qin S J, Wang H. Optimal operational control for complex industrial processes. Annual Reviews in Control, 2014, 38(1):81-92 doi: 10.1016/j.arcontrol.2014.03.005
    [4] 杨亚茹, 李少远.切换非线性系统全局优化运行的经济预测控制.自动化学报, 2017, 43(6):1017-1027 http://www.aas.net.cn/CN/abstract/abstract19077.shtml

    Yang Ya-Ru, Li Shao-Yuan. Economic model predictive control for global optimal operation of nonlinear switching systems. Acta Automatica Sinica, 2017, 43(6):1017-1027 http://www.aas.net.cn/CN/abstract/abstract19077.shtml
    [5] 张翔宇, 李继庚, 周平, 张占波, 刘焕彬, 王宏.制浆氯漂过程运行优化控制系统.控制工程, 2014, 21(2):303-308 doi: 10.3969/j.issn.1671-7848.2014.02.032

    Zhang Xiang-Yu, Li Ji-Geng, Zhou Ping, Zhang Zhan-Bo, Liu Huan-Bin, Wang Hong. Operational optimization control system for pulp chlorination process. Control Engineering of China, 2014, 21(2):303-308 doi: 10.3969/j.issn.1671-7848.2014.02.032
    [6] 刘晓青, 程全, 李晋, 周小东.浮选生产过程综合自动化系统.控制工程, 2016, 23(11):1702-1706 http://d.old.wanfangdata.com.cn/Periodical/jczdh201611011

    Liu Xiao-Qing, Cheng Quan, Li Jin, Zhou Xiao-Dong. Integrated automation system for flotation processes. Control Engineering of China, 2016, 23(11):1702-1706 http://d.old.wanfangdata.com.cn/Periodical/jczdh201611011
    [7] Wang R H, Qiu M J, Zhao K L, Qian Y. Optimal RTO timer for best transmission efficiency of DTN protocol in deep-space vehicle communications. IEEE Transactions on Vehicular Technology, 2017, 66(3):2536-2550 doi: 10.1109/TVT.2016.2572079
    [8] 潘红光, 高海南, 孙耀, 张英, 丁宝苍.基于多优先级稳态优化的双层结构预测控制算法及软件实现.自动化学报, 2014, 40(3):405-414 http://www.aas.net.cn/CN/abstract/abstract18305.shtml

    Pan Hong-Guang, Gao Hai-Nan, Sun Yao, Zhang Ying, Ding Bao-Cang. The algorithm and software implementation for double-layered model predictive control based on multi-priority rank steady-state optimization. Acta Automatica Sinica, 2014, 40(3):405-414 http://www.aas.net.cn/CN/abstract/abstract18305.shtml
    [9] Ding J L, Modares H, Chai T, Lewis F L. Data-based multiobjective plant-wide performance optimization of industrial processes under dynamic environments. IEEE Transactions on Industrial Informatics, 2016, 12(2):454-465 doi: 10.1109/TII.2016.2516973
    [10] Wang T, Gao H J, Qiu J B. A combined adaptive neural network and nonlinear model predictive control for multirate networked industrial process control. IEEE Transactions on Neural Networks and Learning Systems, 2016, 27(2):416-425 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=4d9bb8f6ad6ba73ffa67e57947d5211f
    [11] Yang X P, Chen Y R. Intelligent control and optimization of the coal slime flotation. Advanced Materials Research, 2012, 524-527:1007-1010 doi: 10.4028/www.scientific.net/AMR.524-527
    [12] Li H B, Chai T Y, Zhang L Y. Hybrid intelligent optimal control for flotation processes. In: Proceedings of the 2012 American Control Conference (ACC). Montreal, QC, Canada: IEEE, 2012. 4891-4896
    [13] Jiang Y, Fan J L, Chai T Y, Li J N, Lewis F L. Data-driven flotation industrial process operational optimal control based on reinforcement learning. IEEE Transactions on Industrial Informatics, 2018, 14(5):1974-1989 doi: 10.1109/TII.2017.2761852
    [14] Jiang Y, Fan J L, Chai T Y, Lewis F L. Dual-rate operational optimal control for flotation industrial process with unknown operational model. IEEE Transactions on Industrial Electronics, 2019, 66(6):4587-4599 doi: 10.1109/TIE.2018.2856198
    [15] Rojas D, Cipriano A. Model based predictive control of a rougher flotation circuit considering grade estimation in intermediate cells. Dyna, 2011, 78(166):29-37 http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_a93b7dd58593186e6d3c37cdada94186
    [16] Jiang Y, Fan J L, Chai T Y, Chen T W. Setpoint dynamic compensation via output feedback control with network induced time delays. In: Proceedings of the 2015 American Control Conference (ACC). Chicago, IL, USA: IEEE, 2015: 5384-5389
    [17] Wang T, Gao H J, Qiu J B. A combined fault-tolerant and predictive control for network-based industrial processes. IEEE Transactions on Industrial Electronics, 2016, 63(4):2529-2536 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=b49c2d011b2aa58addfb405f23a867fc
    [18] Fan J L, Jiang Y, Chai T Y. MPC-based setpoint compensation with unreliable wireless communications and constrained operational conditions. Neurocomputing, 2017, 270:110-121 doi: 10.1016/j.neucom.2016.10.098
    [19] Jury E I. Inners and Stability of Dynamic Systems. Malabar, Florida, India:Krieger Pub Co, 1982.
    [20] 柴天佑.多变量自适应解耦控制及应用.北京:科学出版社, 2001.

    Chai Tian-You. Multivariable Adaptive Decoupling Control and Its Application. Beijing:Science Press, 2001.
    [21] Chai T Y, Zhai L F, Yue H. Multiple models and neural networks based decoupling control of ball mill coal-pulverizing systems. Journal of Process Control, 2011, 21(3):351-366 doi: 10.1016/j.jprocont.2010.11.007
    [22] 贾瑶, 岳恒, 柴天佑.高压酸浸过程多工况切换控制方法.控制理论与应用, 2014, 31(10):1318-1326 doi: 10.7641/CTA.2014.30886

    Jia Yao, Yue Heng, Chai Tian-You. Multi-operation condition switching control for high pressure acid leaching process. Control Theory and Applications, 2014, 31(10):1318-1326 doi: 10.7641/CTA.2014.30886
    [23] Hägglund T. A control-loop performance monitor. Control Engineering Practice, 1995, 3(11):1543-1551 doi: 10.1016/0967-0661(95)00164-P
    [24] 贾瑶, 柴天佑.汽水板式换热过程区间串级智能控制方法.自动化学报, 2016, 42(1):37-46 http://www.aas.net.cn/CN/abstract/abstract18794.shtml

    Jia Yao, Chai Tian-You. Interval cascade intelligent control in vaper-water plate-type heat exchange process. Acta Automatica Sinica, 2016, 42(1):37-46 http://www.aas.net.cn/CN/abstract/abstract18794.shtml
    [25] Jia Y, Chai T Y. A data-driven dual-rate control method for a heat exchanging process. IEEE Transactions on Industrial Electronics, 2017, 64(5):4158-4168 doi: 10.1109/TIE.2016.2608878
    [26] 王兰豪, 贾瑶, 柴天佑.再磨过程的泵池液位和给矿压力双速率区间控制.自动化学报, 2017, 43(6):993-1006 http://www.aas.net.cn/CN/abstract/abstract19075.shtml

    Wang Lan-Hao, Jia Yao, Chai Tian-You. Dual-rate interval control of pump pool level and feeding pressure during regrinding. Acta Automatica Sinica, 2017, 43(6):993-1006 http://www.aas.net.cn/CN/abstract/abstract19075.shtml
  • 加载中
图(12) / 表(2)
计量
  • 文章访问数:  2912
  • HTML全文浏览量:  407
  • PDF下载量:  705
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-09-27
  • 录用日期:  2017-10-20
  • 刊出日期:  2019-04-20

目录

    /

    返回文章
    返回