2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种改进的皮层网络环境认知模型

武悦 阮晓钢 黄静 柴洁

武悦, 阮晓钢, 黄静, 柴洁. 一种改进的皮层网络环境认知模型. 自动化学报, 2021, 47(6): 1401−1411 doi: 10.16383/j.aas.c190715
引用本文: 武悦, 阮晓钢, 黄静, 柴洁. 一种改进的皮层网络环境认知模型. 自动化学报, 2021, 47(6): 1401−1411 doi: 10.16383/j.aas.c190715
Wu Yue, Ruan Xiao-Gang, Huang Jing, Chai Jie. An improved cortical network model for environment cognition. Acta Automatica Sinica, 2021, 47(6): 1401−1411 doi: 10.16383/j.aas.c190715
Citation: Wu Yue, Ruan Xiao-Gang, Huang Jing, Chai Jie. An improved cortical network model for environment cognition. Acta Automatica Sinica, 2021, 47(6): 1401−1411 doi: 10.16383/j.aas.c190715

一种改进的皮层网络环境认知模型

doi: 10.16383/j.aas.c190715
基金项目: 国家自然科学基金(61773027), 北京市教育委员会科技计划(KM201810005028), 北京市自然科学基金(4174083)资助
详细信息
    作者简介:

    武悦:北京工业大学信息学部硕士研究生. 2017年获得西南交通大学学士学位. 主要研究方向为环境认知建模与类脑计算.E-mail: wuy50271@gmail.com

    阮晓钢:北京工业大学信息学部教授. 1992年获得浙江大学博士学位. 主要研究方向为自动控制, 人工智能与智能机器人.E-mail: adrxg@bjut.edu.cn

    黄静:北京工业大学信息学部副教授. 2016年获得北京工业大学控制科学与工程博士学位. 主要研究方向为认知机器人与机器学习. 本文通信作者.E-mail: huangjing@bjut.edu.cn

    柴洁:北京工业大学信息学部博士研究生. 主要研究方向为认知学习和认知导肮.E-mail: chaijie@emails.bjut.edu.cn

An Improved Cortical Network Model for Environment Cognition

Funds: Supported by National Natural Science Foundation of China (61773027), Project of S&T Plan of Beijing Municipal Commission of Education (KM201810005028), Beijing Natural Science Foundation (4174083)
More Information
    Author Bio:

    WU Yue Master student at the Faculty of Information Technology, Beijing University of Technology. He received his bachelor degree from Southwest Jiaotong University in 2017. His research interest covers environment cognition modelling and brain-inspired computing

    RUAN Xiao-Gang Professor at the Faculty of Information Technology, Beijing University of Technology. He received his Ph. D. degree from Zhejiang University in 1992. His research interest covers automatic control, artificial intelligence, and intelligent robot

    HUANG Jing Associate professor at the Faculty of Information Technology, Beijing University of Technology. She received her Ph. D. degree in control science and engineering from Beijing University of Technology in 2016. Her research interest covers cognitive robotics, machine learning and industrial big data. Corresponding author of this paper

    CHAI Jie Ph. D. candidate at the Faculty of Information Technology, Beijing University of Technology. Her research interest covers cognitive learning and cognitive navigation

  • 摘要: 前额皮层是哺乳动物环境认知能力的重要神经生理基础, 许多研究基于皮层网络结构对前额皮层进行计算建模, 使机器人能够完成环境认知与导航任务. 但是, 对皮层网络模型神经元噪声(一种干扰神经元规律放电的内部电信号)鲁棒性方面的研究不多, 传统模型采用的奖励扩散方法存在着导航性能随噪声增大而下降过快的问题, 同时其路径规划方法效果不好, 无法规划出全局最短路径. 针对上述问题, 本文在皮层网络的基础上引入波前传播算法, 结合全局抑制神经元来设计奖励传播回路, 同时将时间细胞和位置偏好细胞引入模型的路径规划回路以改善路径规划效果. 为了验证模型的有效性, 本文复现了心理学上两个经典的环境认知实验. 实验结果表明, 本模型与其他皮层网络模型相比表现出更强的神经元噪声鲁棒性. 同时, 模型保持了较好的路径规划效果, 与传统路径规划算法相比具有较高的效率.
  • 图  1  皮层网络模型结构示意图

    Fig.  1  Scheme of the cortical column network model

    图  2  托尔曼14单元T型迷宫实验示意图

    Fig.  2  Sketch of Tolman 14-unit T-maze experiment

    图  3  机器人探索迷宫后建立的皮层网络拓扑图 (m)

    Fig.  3  Cortical column topological map after exploring the maze (m)

    图  4  噪声标准差对导航结果的影响

    Fig.  4  Influence of neuron noise standard variation on navigation results

    图  5  机器人在环境发生变化前后采取的路线

    Fig.  5  Path planned before and after environmental change

    图  6  Morris水迷宫示意图

    Fig.  6  Sketch of Morris water maze

    图  7  Morris水迷宫路逃生实验中的移动轨迹(左)和建立的皮层网络拓扑图(右) (m)

    Fig.  7  Moving trace on the preparing stage (left) and the established cortical column network (right) (m)

    图  8  不同噪声对导航的影响

    Fig.  8  Influence of neuron noise on navigation results

    图  9  从不同位置出发的逃生路线 (m)

    Fig.  9  Escape trace from different starting points (m)

    图  10  不同规划方法所规划路径长度

    Fig.  10  Length of planned path by different planning method

    表  1  模型参数值设定

    Table  1  Parameter setting of the model

    神经元类型参数
    奖励细胞$r$整合放电型$w_{rr}=1,w_{rq_1}=1$
    中间神经元$q_1$整合放电型$w_{q_1q_2}=0.1,\tau_{STDP}=0.02,{M }=1$
    中间神经元$q_2$整合放电型$w_{q_2q_2}=w_{q_1q_1},w_{sq_2}=0.1$
    位置偏好细胞$m$非放电型$w_{q_2m}=1,w_{tm}=1$
    位置细胞$s$非放电型$\sigma_{s} = 0.35,V_{s,thr}=0.5$
    时间细胞$t$非放电型$\tau_t=10,\eta=2,V_{t,thr}=0.95$
    全局抑制神经元非放电型$V_{inh}=0.1$
    下载: 导出CSV

    表  2  不同方法规划路径的转弯次数及转弯角度对比

    Table  2  Comparison of turning counts and angle of path planned by different path planning methods

    神经元平均转弯次数平均累计转弯角度
    本模型1.9$28.36^{\circ}$
    A* 算法17.55$331.9^{\circ}$
    滚动窗口 RRT 算法12.46$177.25^{\circ}$
    下载: 导出CSV
  • [1] Contreras M, Pelc T, Llofriu M, Weitzenfeld A. The ventral hippocampus is involved in multi-goal obstacle-rich spatial navigation. Hippocampus, 2018, 28: 853−866 doi: 10.1002/hipo.22993
    [2] Vorhees C, Williams M. Assessing spatial learning and memory in rodents. ILAR Journal, 2014, 55(2): 310−332 doi: 10.1093/ilar/ilu013
    [3] Bucci D, Chiba A, Gallagher M. Spatial learning in male and female long-evans rats. Behavioral Neuroscience, 1995, 109(1): 180−183 doi: 10.1037/0735-7044.109.1.180
    [4] Granon S, Poucet B. Medial prefrontal lesions in the rat and spatial navigation: Evidence for impaired planning. Behavioral Neuroscience, 1995, 109(3): 474−484 doi: 10.1037/0735-7044.109.3.474
    [5] Martinet L E, Sheynikhovich D, Benchenane K, Arleo A. Spatial learning and action planning in a prefrontal cortical network model. Public Library of Science Computational Biology, 2011, 7(5): 1−21
    [6] Martinet L E, Passot J B, Fouque B, Meyer J A. Map-based spatial navigation: A cortical column model for action planning. In: Proceedings of International Conference Spatial Cognition, Freiburg, Germany: Springer, 2008. 39−55.
    [7] Erdem U M, Hasselmo M E. A biologically inspired hierarchical goal directed navigation model. Journal of Physiology-Paris, 2014, 108(1): 28−37 doi: 10.1016/j.jphysparis.2013.07.002
    [8] Chersi F, Pezzulo G. Using hippocampal-striatal loops for spatial navigation and goal-directed decision-making. Cognitive Processing, 2012, 13(1): 125−129
    [9] Kaplan R, Friston K J. Planning and navigation as active inference. Biological Cybernetics, 2018, 112(4): 323−343 doi: 10.1007/s00422-018-0753-2
    [10] Destexhe A, Rudolph-Lilith M. Neuronal Noise. New York: Springer, 2012, 1−2
    [11] Arleo A, Smeraldi F, Gerstner W. Cognitive navigation based on nonuniform gabor space sampling, unsupervised growing networks, and Reinforcement learning. IEEE Transactions on Neural Networks, 2004, 15(3): 639−652 doi: 10.1109/TNN.2004.826221
    [12] Strosslin T, Sheynikhovich D, Chavarriaga, Gerstner W. Robust self-localisation and navigation based on hippocampal place cells. Neural Networks, 2012, 18(9): 1125−1140
    [13] Forster D J, Morris R G, Dayan P. A model of hippocampally dependent navigation, using the temporal difference learning rule. Hippocampus, 2000, 10(1): 1−16
    [14] Tolman E C, Honzik C H. “Insight” in rats. University of California Publications in Psychology, 1931, 4: 215−232
    [15] Edvardsen V, Bicanski A, Burgess N. Navigating with grid and place cells in cluttered environments. Hippocampus, 2019: 1−13
    [16] Erdem U M, Hasselmo M. A goal-directed spatial navigation model using forward trajectory planning based on grid cells. European Journal of Neuroscience, 2012, 35: 916−931 doi: 10.1111/j.1460-9568.2012.08015.x
    [17] Gonner L, Vitay J, Hamker F H. Predictive place-cell sequences for goal-finding emerge from goal memory and the cognitive map: a computational model. Frontiers in Computational Neuroscience, 2017, 11(84): 1−19
    [18] Tejera G, Llofriu M, Barrera A, Weitzenfeld A. Bio-inspired robotics: A spatial cognition model integrating place cells, grid cells and head direction cells. Journal of Intelligent and Robotic Systems, 2018, 91(3): 85−99
    [19] Bicanski A, Burgess N. A neural-level model of spatial memory and imagery. eLife, 2018, 7: e33752 doi: 10.7554/eLife.33752
    [20] Ponulak F, Hopfield J J. Rapid, parallel path planning by propagating wavefronts of spiking neural activity. Frontiers in Computational Neuroscience, 2013, 7(98): 1−14
    [21] Bi G Q, Poo M M. Synaptic modifications in cultured hippocampal neurons: dependence on spike timing, synaptic strength, and postsynaptic cell type. Journal of Neuroscience, 1998, 18: 10464−10472 doi: 10.1523/JNEUROSCI.18-24-10464.1998
    [22] Kang L, DeWeese M R. Replay as wavefronts and theta sequences as bump oscillations in a grid cell attractor network. eLife, 2019, 8: e46351
    [23] Ellender T J, Nissen W, Colgin L L, Mann E O, Paulsen O. Priming of hippocampal population bursts by individual perisomatic-targeting interneurons. Journal of Neuroscience, 2010, 30(17): 5979−5991 doi: 10.1523/JNEUROSCI.3962-09.2010
    [24] Zennir M, Benmohammed M, Martinez D. Robust path planning by propagating rhythmic spiking activity in a hippocampal network model. Biologically Inspired Cognitive Architectures, 2017, 20: 47−58 doi: 10.1016/j.bica.2017.02.001
    [25] Khajeh-Alijani A, Urbanczik R, Senn W. Scale-free navigational planning by neuronal traveling waves. Public Library of Science One, 2015, 10(7): 1−15
    [26] Palmer J, Keane A, Gong P. Learning and executing goal directed choices by internally generated sequences in spiking neural circuits. Public Library of Science Computational Biology, 2017, 13(7): e1005669
    [27] Hok V, Save E, Lenck-Santini P P, Poucet B. Coding for spatial goals in the prelimbic/infralimbic area of the rat frontal cortex. Proceedings of the National Academy of Sciences, 2005, 102(12): 4602−4607 doi: 10.1073/pnas.0407332102
    [28] Preston A R, Eichenbaum H. Interplay of hippocampus and prefrontal cortex in memory. Current Biology, 2013, 23(17): 764−773 doi: 10.1016/j.cub.2013.05.041
    [29] O' Keefe J. Place units in the hippocampus of the freely moving rat. Experimental Neurology, 1976, 51(1): 78−109 doi: 10.1016/0014-4886(76)90055-8
    [30] Eichenbaum H. Memory on Time. Trends in Cognitive Sciences, 2013, 17: 81−88 doi: 10.1016/j.tics.2012.12.007
    [31] Ramakrishnan A, Byun Y W, Rand K, Pedersen C E, Levedev M A, Nicolelis M A. Interplay of hippocampus and prefrontal cortex in memory. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(24): 4841−4850 doi: 10.1073/pnas.1703668114
    [32] Dorst L, Trovato K. Optimal path planning by cost wave propagation in metric configuration space. In: SPIE Advances in Intelligent Robotics Systems, Cambridge, USA: SPIE, 1989. 186−197.
    [33] Tolman E C. Cognitive maps in rats and men. The Psychological Review, 1948, 55(4): 189−208 doi: 10.1037/h0061626
    [34] Morris R, Garrud P, Rawlins J, O' Keefe J. Place navigation impaired in rats with hippocampal lesions. Nature, 1982, 297: 681−683 doi: 10.1038/297681a0
    [35] Dechter R, Pearl J. Generalized best-first search strategies and the optimality of A*. Journal of the ACM, 1985, 32(3): 505−536 doi: 10.1145/3828.3830
    [36] 康亮, 赵春霞, 郭剑辉. 未知环境下改进的基于RRT算法的移动机器人路径规划. 模式识别与人工智能, 2009, 22(3): 337−343 doi: 10.3969/j.issn.1003-6059.2009.03.001

    Kang Liang, Zhao Chun-Xia, Guo Jian-Hui. Improved path planning based on rapidly exploring random tree for mobile robot in unknown environment. Pattern Recognition and Artificial Intelligence, 2009, 22(3): 337−343 doi: 10.3969/j.issn.1003-6059.2009.03.001
    [37] 卜新苹, 苏虎, 邹伟, 王鹏, 周海. 基于非均匀环境建模与三阶Bezier曲线的平滑路径规划. 自动化学报, 2017, 43(5): 710−724

    Bu Xin-Ping, Su Hu, Zou Wei, Wang Peng, Zhou Hai. Smooth path planning based on non-uniformly modeling and cubic bezier curves. Acta Automatica Sinica, 2017, 43(5): 710−724
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  863
  • HTML全文浏览量:  189
  • PDF下载量:  150
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-10-16
  • 录用日期:  2020-02-23
  • 刊出日期:  2021-06-10

目录

    /

    返回文章
    返回