2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

集成自编码与PCA的高炉多元铁水质量随机权神经网络建模

周平 张丽 李温鹏 戴鹏 柴天佑

周平, 张丽, 李温鹏, 戴鹏, 柴天佑. 集成自编码与PCA的高炉多元铁水质量随机权神经网络建模. 自动化学报, 2018, 44(10): 1799-1811. doi: 10.16383/j.aas.2018.c170299
引用本文: 周平, 张丽, 李温鹏, 戴鹏, 柴天佑. 集成自编码与PCA的高炉多元铁水质量随机权神经网络建模. 自动化学报, 2018, 44(10): 1799-1811. doi: 10.16383/j.aas.2018.c170299
ZHOU Ping, ZHANG Li, LI Wen-Peng, DAI Peng, CHAI Tian-You. Autoencoder and PCA Based RVFLNs Modeling for Multivariate Molten Iron Quality in Blast Furnace Ironmaking. ACTA AUTOMATICA SINICA, 2018, 44(10): 1799-1811. doi: 10.16383/j.aas.2018.c170299
Citation: ZHOU Ping, ZHANG Li, LI Wen-Peng, DAI Peng, CHAI Tian-You. Autoencoder and PCA Based RVFLNs Modeling for Multivariate Molten Iron Quality in Blast Furnace Ironmaking. ACTA AUTOMATICA SINICA, 2018, 44(10): 1799-1811. doi: 10.16383/j.aas.2018.c170299

集成自编码与PCA的高炉多元铁水质量随机权神经网络建模

doi: 10.16383/j.aas.2018.c170299
基金项目: 

中央高校基本科研业务费项目 N160801001

辽宁省教育厅科技项目 L20150186

中央高校基本科研业务费项目 N160805001

国家自然科学基金 61290323

国家自然科学基金 61473064

国家自然科学基金 61333007

国家自然科学基金 61790572

详细信息
    作者简介:

    张丽  东北大学硕士研究生.于2014年获得东北大学学士学位.主要研究方向为数据驱动建模与控制, 机器学习算法.E-mail:zhangli_neu@163.com

    李温鹏  东北大学硕士研究生.于2016年获得烟台大学学士学位.主要研究方向为数据驱动建模与控制, 机器学习算法.E-mail:weepenli@163.com

    戴鹏  东北大学硕士研究生.于2015年获得三峡大学学士学位.主要研究方向为数据驱动建模与控制, 机器学习算法.E-mail:daipeng19911023@163.com

    柴天佑  中国工程院院士, 东北大学教授, IEEE Fellow, IFAC Fellow.1985年获得东北大学博士学位.主要研究方向为自适应控制, 多变量智能解耦控制, 流程工业综合自动化理论, 方法与技术.E-mail:tychai@mail.neu.edu.cn

    通讯作者:

    周平  东北大学教授.分别于2003年, 2006年, 2013年获得东北大学学士学位、硕士学位和博士学位.主要研究方向为工业过程运行反馈控制, 数据驱动建模与控制.本文通信作者.E-mail:zhouping@mail.neu.edu.cn

Autoencoder and PCA Based RVFLNs Modeling for Multivariate Molten Iron Quality in Blast Furnace Ironmaking

Funds: 

the Fundamental Research Funds for the Central Universities N160801001

the General Project on Scientiflc Research for the Education Department of Liaoning Province L20150186

the Fundamental Research Funds for the Central Universities N160805001

National Natural Science Foundation of China 61290323

National Natural Science Foundation of China 61473064

National Natural Science Foundation of China 61333007

National Natural Science Foundation of China 61790572

More Information
    Author Bio:

     Master student at Northeastern University. She received her bachelor degree from Northeastern University in 2014. Her research interest covers data-driven modeling and control, and machine learning algorithm

     Master student at Northeastern University. He received his bachelor degree from YanTai University in 2016. His research interest covers data-driven modeling and control, and machine learning algorithm

     Master student at Northeastern University. He received his bachelor degree from China Three Gorges University in 2015. His research interest covers data-driven modeling and control, and machine learning algorithm

     Academician of Chinese Academy of Engineering, professor at Northeastern University, IEEE Fellow, IFAC Fellow. He received his Ph. D. degree from Northeastern University in 1985. His research interest covers adaptive control, intelligent decoupling control, and integrated automation theory, method and technology of industrial process

    Corresponding author: ZHOU Ping  Professor at Northeastern University. He received his bachelor degree, master degree, and Ph. D. degree from Northeastern University in 2003, 2006 and 2013, respectively. His research interest covers operation feedback control of industrial process, data-driven modeling and control. Corresponding author of this paper
  • 摘要: 针对随机权神经网络(Random vector functional-link networks,RVFLNs)建模存在的过拟合和泛化能力差的问题,集成自编码(Autoencoder)和主成分分析(Principal component analysis,PCA)技术,提出一种新型的改进RVFLNs算法,即AE-P-RVFLNs算法,用于建立高炉多元铁水质量在线估计的NARX(Nonlinear autoregressive exogenous)模型.首先,为了尽可能挖掘实际复杂工业数据中的有用信息和充分揭示输入数据之间的内在关系,采用Autoencoder前馈随机网络技术训练建模输入数据,并将训练得到的输出权值作为后续RVFLNs的输入权值;然后,引入PCA技术对RVFLNs的高维隐层输出矩阵进行降维,避免隐层输出矩阵多重共线性问题,从而解决由于隐层节点过多导致模型过拟合的问题;最后,基于所提AE-P-RVFLNs算法建立某大型高炉多元铁水质量在线估计的NARX模型.工业实验和比较分析表明:采用本文算法建立的多元铁水质量在线估计模型可有效提高运算效率和估计精度,尤其是避免常规RVFLNs建模存在的过拟合问题.
    1)  本文责任编委 贺威
  • 图  1  AE-P-RVFLNs结构

    Fig.  1  The structure of AE-P-RVFLNs

    图  2  Autoencoder前馈随机网络结构

    Fig.  2  Autoencoder feedforward random network structure

    图  3  P-RVFLNs结构

    Fig.  3  The structure of P-RVFLNs

    图  4  高炉炼铁工艺示意图

    Fig.  4  Diagram of a typical BF ironmaking process

    图  5  基于AE-P-RVFLNs的多元铁水质量NARX模型建模结果

    Fig.  5  Modeling results of multicomponent hot metal mass NARX model based on AE-P-RVFLNs

    图  6  不同模型的多元铁水质量预测结果

    Fig.  6  Comparison of multicomponent hot metal quality for difierent models

    图  7  逐一增加隐层节点数时所提AE-P-RVFLNs训练集和测试集RMSE变化曲线

    Fig.  7  The RMSE curve of the training set and test set of the proposed AE-P-RVFLNs when the number of hidden nodes is increased one by one

    图  8  逐一增加隐层节点数时RVFLNs训练集和测试集RMSE变化曲线

    Fig.  8  The RMSE curve of training set and test set of RVFLNs when the number of hidden nodes is increased one by one

    图  9  逐一增加隐层节点数时AE-RVFLNs训练集和测试集RMSE变化曲线

    Fig.  9  The RMSE curve of training set and test set of AE-RVFLNs when the number of hidden nodes is increased one by one

    图  10  逐一增加隐层节点数时P-RVFLNs训练集和测试集RMSE变化曲线

    Fig.  10  The RMSE curve of training set and test set of P-RVFLNs when the number of hidden nodes is increased one by one

    表  1  PCA求取的各主成分特征值、方差贡献率以及累积方差贡献率

    Table  1  PCA to obtain the principal component eigenvalues, variance contribution rate and cumulative variance contribution rate

    主成分 特征值 方差贡献率(%) 累计方差贡献率(%)
    1 7.467 46.666 46.666
    2 4.205 26.279 72.945
    3 1.951 12.196 85.141
    4 1.130 7.063 92.204
    5 0.683 4.268 96.472
    6 0.360 2.251 98.723
    7 0.140 0.874 99.597
    8 0.034 0.211 99.809
    9 0.020 0.126 99.935
    10 0.004 0.024 99.959
    11 0.003 0.021 99.980
    12 0.001 0.009 99.989
    13 0.001 0.006 99.995
    14 0.001 0.004 99.999
    15 0.000 0.001 100.000
    16 0.000 0.000 100.000
    下载: 导出CSV

    表  2  因子载荷矩阵(由PCA提取的6个主成分)

    Table  2  Factor load matrix (Six principal components extracted by PCA)

    物理变量 主成分
    1 2 3 4 5 6
    冷风流量 0.816 -0.449 0.310 -0.180 0.004 0.032
    送风比 0.813 -0.445 0.320 -0.179 0.007 0.041
    热风压力(kPa) 0.186 0.250 0.897 0.133 0.159 -0.045
    透气性 0.625 -0.318 -0.549 -0.347 -0.110 0.000
    阻力系数 -0.786 0.226 0.526 0.071 0.133 -0.081
    热风温度(℃) 0.161 0.958 -0.021 -0.177 0.141 -0.045
    富氧流量 0.797 0.221 -0.175 0.525 -0.090 -0.036
    富氧率 0.781 0.242 -0.188 0.534 -0.093 -0.037
    设定喷煤量(m3/h) -0.049 0.868 0.040 0.067 -0.064 0.480
    鼓风湿度(RH) 0.105 -0.512 -0.362 0.200 0.737 0.111
    理论燃烧温度(℃) 0.747 0.580 -0.080 0.094 0.080 -0.286
    炉顶压力(kPa) 0.813 -0.452 0.312 -0.181 0.003 0.033
    实际风速 0.526 0.763 -0.119 -0.321 0.139 -0.028
    鼓风动能 0.681 0.623 -0.049 -0.346 0.132 -0.018
    炉腹煤气量(kg/t) 0.967 -0.138 0.158 0.105 -0.024 0.082
    炉腹煤气指数 0.958 -0.129 0.162 0.100 -0.026 0.102
    下载: 导出CSV

    表  3  不同算法相关统计指标比较

    Table  3  Comparison of statistical indicators for difierent algorithms

    算法 运算 RMSE MAPE (%)
    时间 [Si] [P] [Si] MIT [Si] [P] [S] MIT
    RVFLNs 0.002269 0.1172 0.0080 0.0056 9.8078 5.1192 5.4152 4.5631 5.4759
    P-RVFLNs 0.001457 0.1464 0.0087 0.0065 10.0500 4.8998 4.4591 5.9490 5.1976
    AE-RVFLNs 0.002027 0.1307 0.0135 0.0064 11.4555 6.8174 6.0327 6.6126 7.4414
    AE-P-RVFLNs 0.001358 0.1124 0.0071 0.0054 9.0443 4.5551 2.9175 3.0825 4.6068
    下载: 导出CSV
  • [1] 宋贺达, 周平, 王宏, 柴天佑.高炉炼铁过程多元铁水质量非线性子空间建模及应用.自动化学报, 2016, 42(21):1664-1679 http://www.aas.net.cn/CN/abstract/abstract18956.shtml

    Song He-Da, Zhou Ping, Wang Hong, Chai Tian-You. Nonlinear subspace modeling of multivariate molten iron quality in blast furnace ironmaking and its application. Acta Automatica Sinica, 2016, 42(21):1664-1679 http://www.aas.net.cn/CN/abstract/abstract18956.shtml
    [2] Jian L, Gao C H, Xia Z H. Constructing multiple kernel learning framework for blast furnace automation. IEEE Transactions on Automation Science and Engineering, 2012, 9(4):763-777 doi: 10.1109/TASE.2012.2211100
    [3] Zhou P, Lv Y B, Wang H, Chai T Y. Data-driven robust RVFLNs modeling of a blast furnace iron-making process using Cauchy distribution weighted M-estimation. IEEE Transactions on Industrial Electronics, 2017, 64(9):7141-7151 doi: 10.1109/TIE.2017.2686369
    [4] 蒋朝辉, 董梦林, 桂卫华, 阳春华, 谢永芳.基于Bootstrap的高炉铁水硅含量二维预报.自动化学报, 2016, 42(5):715-723 http://www.aas.net.cn/CN/abstract/abstract18861.shtml

    Jiang Zhao-Hui, Dong Meng-Lin, Gui Wei-Hua, Yang Chun-Hua, Xie Yong-Fang. Two-dimensional prediction for silicon content of hot metal of blast furnace based on bootstrap. Acta Automatica Sinica, 2016, 42(5):715-723 http://www.aas.net.cn/CN/abstract/abstract18861.shtml
    [5] de Castro J A, Nogami H, Yagi J I. Three-dimensional multiphase mathematical modeling of the blast furnace based on the multifluid model. ISIJ International, 2002, 42(1):44-52 doi: 10.2355/isijinternational.42.44
    [6] 崔桂梅, 孙彤, 张勇.支持向量机在高炉铁水温度预测中的应用.控制工程, 2013, 20(5):809-812, 817 doi: 10.3969/j.issn.1671-7848.2013.05.005

    Cui Gui-Mei, Sun Tong, Zhang Yong. Application of support vector machine (SVM) in prediction of molten iron temperature in blast furnace. Control Engineering of China, 2013, 20(5):809-812, 817 doi: 10.3969/j.issn.1671-7848.2013.05.005
    [7] 储满生, 王宏涛, 柳政根, 唐珏.高炉炼铁过程数学模拟的研究进展.钢铁, 2014, 49(11):1-8 http://d.old.wanfangdata.com.cn/Periodical/gt201411001

    Chu Man-Sheng, Wang Hong-Tao, Liu Zheng-Gen, Tang Jue. Research progress on mathematical modeling of blast furnace ironmaking process. Iron and Steel, 2014, 49(11):1-8 http://d.old.wanfangdata.com.cn/Periodical/gt201411001
    [8] Lvanov E B, Klimovitskii M D, Anisimov E F. Expert system for blast-furnace operators. Metallurgist, 2011, 54(11-12):730-736 doi: 10.1007/s11015-011-9366-x
    [9] Liu J K, Wang S Q. Construction of the inference engine of blast furnace expert system. Journal of Iron & Steel Research (International), 1998, 5(2):22-27 http://www.cnki.com.cn/Article/CJFDTOTAL-YING199802004.htm
    [10] Zarandi M H F, Ahmadpour P. Fuzzy agent-based expert system for steel making process. Expert Systems with Applications, 2009, 36(5):9539-9547 doi: 10.1016/j.eswa.2008.10.084
    [11] Cai J H, Zeng J S, Luo S H. A state space model for monitoring of the dynamic blast furnace system. ISIJ International, 2012, 52(12):2194-2199 doi: 10.2355/isijinternational.52.2194
    [12] Bhattacharya T. Prediction of silicon content in blast furnace hot metal using partial least squares (PLS). ISIJ International, 2005, 45(12):1943-1945 doi: 10.2355/isijinternational.45.1943
    [13] Gao C H, Ge Q H, Jian L. Rule extraction from fuzzy-based blast furnace SVM multiclassifier for decision-making. IEEE Transactions on Fuzzy Systems, 2014, 22(3):586-596 doi: 10.1109/TFUZZ.2013.2269145
    [14] Yuan M, Zhou P, Li M L, Li R F, Wang H, Chai T Y. Intelligent multivariable modeling of blast furnace molten iron quality based on dynamic AGA-ANN and PCA. Journal of Iron and Steel Research, International, 2015, 22(6):487-495 http://d.old.wanfangdata.com.cn/Periodical/gtyjxb-e201506005
    [15] Chen J. A predictive system for blast furnaces by integrating a neural network with qualitative analysis. Engineering Applications of Artificial Intelligence, 2001, 14(1):77-85 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=JJ027275069
    [16] Zhou P, Yuan M, Wang H, Chai T Y. Data-driven dynamic modeling for prediction of molten iron silicon content using ELM with self-feedback. Mathematical Problems in Engineering, 2015, 2015:Article No.326160, http://cn.bing.com/academic/profile?id=ba88b75f470cc7ce64a55473cf2142cc&encoded=0&v=paper_preview&mkt=zh-cn
    [17] Zhou P, Yuan M, Wang H, Wang Z, Chai T Y. Multivariable dynamic modeling for molten iron quality using online sequential random vector functional-link networks with self-feedback connections. Information Sciences, 2015, 325:237-255 doi: 10.1016/j.ins.2015.07.002
    [18] Zhang L, Zhou P, Song H D, Yuan M, Chai T Y. Multivariable dynamic modeling for molten iron quality using incremental random vector functional-link networks. Journal of Iron and Steel Research, International, 2016, 23(11):1151-1159 http://d.old.wanfangdata.com.cn/Periodical/gtyjxb-e201611004
    [19] Zhao J, Wang W, Liu Y, Pedrycz W. A two-stage online prediction method for a blast furnace gas system and its application. IEEE Transactions on Control Systems Technology, 2011, 19(3):507-520 http://cn.bing.com/academic/profile?id=9fff45396394326ad8576e6605843d3a&encoded=0&v=paper_preview&mkt=zh-cn
    [20] 王炜, 陈畏林, 叶勇, 徐智慧, 贾斌.神经网络在高炉铁水硫含量预报中的应用.钢铁, 2016, 41(10):19-22 doi: 10.3969/j.issn.1672-5115.2016.10.008

    Wang Wei, Chen Wei-Lin, Ye Yong, Xu Zhi-Hui, Jia Bin. Application of neural network to predict sulphur content in hot metal. Iron and Steel, 2016, 41(10):19-22 doi: 10.3969/j.issn.1672-5115.2016.10.008
    [21] Rumelhart D E, Hinton G E, Williams R J. Learning representations by back-propagating errors. Nature, 1986, 323(6088):533-536 doi: 10.1038/323533a0
    [22] Vincent P, Larochelle H, Lajoie I, Bengio Y, Manzagol PA. Stacked denoising Autoencoders:learning useful representations in a deep network with a local denoising criterion. Journal of Machine Learning Research, 2010, 11(12):3371-3408 http://cn.bing.com/academic/profile?id=1b5321cd3b5fdc0bc4d9b0d4fa8975ef&encoded=0&v=paper_preview&mkt=zh-cn
    [23] Kasun L L C, Zhou H M, Huang G B, Vong C. Representational learning with extreme learning machine for big data. IEEE Intelligent Systems, 2013, 28(6):31-34
    [24] Zhang H G, Yin Y X, Zhang S. An improved ELM algorithm for the measurement of hot metal temperature in blast furnace. Neurocomputing, 2016, 174:232-237 doi: 10.1016/j.neucom.2015.04.106
    [25] Good R P, Kost D, Cherry G A. Introducing a unified PCA algorithm for model size reduction. IEEE Transactions on Semiconductor Manufacturing, 2010, 23(2):201-209 doi: 10.1109/TSM.2010.2041263
  • 加载中
图(10) / 表(3)
计量
  • 文章访问数:  2428
  • HTML全文浏览量:  357
  • PDF下载量:  1043
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-06-05
  • 录用日期:  2017-08-29
  • 刊出日期:  2018-10-20

目录

    /

    返回文章
    返回