2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

结合物体先验和空域约束的室内空域布局推理

姚拓中 左文辉 宋加涛 应宏微

姚拓中, 左文辉, 宋加涛, 应宏微. 结合物体先验和空域约束的室内空域布局推理. 自动化学报, 2017, 43(8): 1402-1411. doi: 10.16383/j.aas.2017.c160043
引用本文: 姚拓中, 左文辉, 宋加涛, 应宏微. 结合物体先验和空域约束的室内空域布局推理. 自动化学报, 2017, 43(8): 1402-1411. doi: 10.16383/j.aas.2017.c160043
YAO Tuo-Zhong, ZUO Wen-Hui, SONG Jia-Tao, YING Hong-Wei. Estimating Spatial Layout of Cluttered Rooms by Using Object Prior and Spatial Constraints. ACTA AUTOMATICA SINICA, 2017, 43(8): 1402-1411. doi: 10.16383/j.aas.2017.c160043
Citation: YAO Tuo-Zhong, ZUO Wen-Hui, SONG Jia-Tao, YING Hong-Wei. Estimating Spatial Layout of Cluttered Rooms by Using Object Prior and Spatial Constraints. ACTA AUTOMATICA SINICA, 2017, 43(8): 1402-1411. doi: 10.16383/j.aas.2017.c160043

结合物体先验和空域约束的室内空域布局推理

doi: 10.16383/j.aas.2017.c160043
基金项目: 

浙江省公益类技术研究项目 2016C33255

宁波市自然科学基金 2015A610132

浙江省自然科学基金 LQ15F020004

宁波市自然科学基金 2013A610113

详细信息
    作者简介:

    左文辉 浙江大学信息与电子工程学院博士研究生.2007年获得浙江大学学士学位.主要研究方向为计算机视觉, 机器学习.E-mail:wenhuizuo@126.com

    宋加涛 宁波工程学院电信学院教授.2003年获得浙江大学博士学位.主要研究方向为图像处理, 模式识别.E-mail:sjt6612@163.com

    应宏微 宁波工程学院电信学院讲师.2004年获得浙江工业大学硕士学位.主要研究方向为图像处理, 视频压缩.E-mail:yinghongwei@163.com

    通讯作者:

    姚拓中 宁波工程学院电信学院讲师.2011年获得浙江大学博士学位.主要研究方向为计算机视觉, 机器学习.本文通信作者.E-mail:thomasyao@zju.edu.cn

Estimating Spatial Layout of Cluttered Rooms by Using Object Prior and Spatial Constraints

Funds: 

Zhejiang Provincial Public Welfare Technology Research Project 2016C33255

Ningbo Natural Science Foundation 2015A610132

Zhejiang Provincial Natural Science Foundation LQ15F020004

Ningbo Natural Science Foundation 2013A610113

More Information
    Author Bio:

    Ph.D. candidate at the College of Information Science and Electronic Engineering, Zhejiang University. He received his bachelor degree from Zhejiang University in 2007. His research interest covers computer vision and machine learning

    Professor at the School of Electronic and Information Engineering, Ningbo University of Technology. He received his Ph.D. degree from Zhejiang University in 2003. His research interest covers image processing and pattern recognition

    Lecturer at the School of Electronic and Information Engineering, Ningbo University of Technology. He received his master degree from Zhejiang University of Technology in 2004. His research interest covers image processing and video compressing

    Corresponding author: YAO Tuo-Zhong Lecturer at the School of Electronic and Information Engineering, Ningbo University of Technology. He received his Ph.D. degree from Zhejiang University in 2011. His research interest covers computer vision and machine learning. Corresponding author of this paper
  • 摘要: 对结构化室内场景的空域布局结构进行估计是计算机视觉领域的研究热点之一.然而,对于内部堆放了众多杂乱物体的室内场景,现有的大多数方法容易受到各种物体遮挡的影响而无法对这一类场景的布局结构进行准确推理.为此,本文方法充分考虑了房间和物体之间的几何和语义关联性,参数化地对房间和内部物体的三维体积分别进行描述,并且提出利用多种高层图像语义来获取物体的先验信息.此外,还在此基础上加入了空域排他性和空域位置等多种空域约束,进而在改进室内场景空域布局估计的同时为物体的识别和定位提供关键信息.本文方法不仅具有较低的求解复杂度,而且通过试验表明相比于现有的经典方法在杂乱的室内场景中能够取得更为鲁棒的空域布局推理结果.
    1)  本文责任编委 贾云得
  • 图  1  本文算法的基本流程

    Fig.  1  The flowchart of our algorithm

    图  2  角距离和直线段组的定义

    Fig.  2  The definitions of the angle distance and straight line groups

    图  3  基于立方体描述的房间结构假设

    Fig.  3  The cubic based room hypothesis

    图  4  候选的房间结构假设集

    Fig.  4  Candidate room hypothesis set

    图  5  基于不同高层图像语义的物体位置估计

    Fig.  5  Different high-level image semantic based object localization

    图  6  候选物体结构假设的生成

    Fig.  6  Candidate object hypothesis generation

    图  7  场景配置约束描述

    Fig.  7  Scene configuration

    图  8  室内场景的空域布局推理结果

    Fig.  8  Spatial layout estimation of indoor scenes

    图  9  不同房间结构假设估计方法的比较

    Fig.  9  Comparisons of different room hypothesis approaches

    图  10  不同高层图像语义在物体结构假设中的像素误差和物体识别率

    Fig.  10  The pixel error and object recognition rate of different high-level image semantics in object structure hypothesis

    表  1  房间结构假设误差

    Table  1  Room hypothesis error

    方法(OPP) A1 A2 A3 A4
    Pixel error 21.2 26.8 17.0 15.9
    Corner error 6.3 11.4 5.5 5.0
    下载: 导出CSV
  • [1] Coughlan J M, Yuille A L. Manhattan world:compass direction from a single image by Bayesian inference. In:Proceedings of the 7th IEEE International Conference on Computer Vision. Kerkyra, Greece:IEEE, 1999. 941-947 http://ieeexplore.ieee.org/document/790349/authors
    [2] Hedau V, Hoiem D, Forsyth D. Recovering the spatial layout of cluttered rooms. In:Proceedings of the 12th IEEE International Conference on Computer Vision. Kyoto, Japan:IEEE, 2009. 1849-1856 Recovering the spatial layout of cluttered rooms
    [3] Lee D C, Hebert M, Kanade T. Geometric reasoning for single image structure recovery. In:Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition. Miami, FL, USA:IEEE, 2009. 2136-2143 Geometric reasoning for single image structure recovery
    [4] Košecká J, Zhang W. Video compass. In:Proceedings of the 7th European Conference on Computer Vision. Copenhagen, Denmark:Springer, 2002. 476-490 http://dl.acm.org/citation.cfm?id=649358
    [5] Rother C. A new approach to vanishing point detection in architectural environments. Image and Vision Computing, 2002, 20(9-10):647-655 doi: 10.1016/S0262-8856(02)00054-9
    [6] Barinova O, Konushin V, Yakubenko A, Lee K, Lim H, Konushin A. Fast automatic single-view 3-D reconstruction of urban scenes. In:Proceedings of the 10th European Conference on Computer Vision. Marseille, France:Springer, 2008. 100-113
    [7] Yu S X, Zhang H, Malik J. Inferring spatial layout from a single image via depth-ordered grouping. In:Proceedings of the 2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops. Anchorage, AK, USA:IEEE, 2008. 1-7 Inferring spatial layout from a single image via depth-ordered grouping
    [8] Nabbe B, Hoiem D, Efros A A A, Hebert M. Opportunistic use of vision to push back the path-planning horizon. In:Proceedings of the 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems. Beijing, China:IEEE, 2006. 2388-2393 doi: 10.1109/IROS.2006.281676
    [9] Hoiem D, Efros A A, Hebert M. Recovering surface layout from an image. International Journal of Computer Vision, 2007, 75(1):151-172 doi: 10.1007/s11263-006-0031-y
    [10] Micusik B, Wildenauer H, Kosecka J. Detection and matching of rectilinear structures. In:Proceedings of the 2008 IEEE Conference on Computer Vision and Pattern Recognition. Anchorage, AK, USA, 2008. 1-7 doi: 10.1109/CVPR.2008.4587488
    [11] Saxena A, Schulte J, Ng A Y. Depth estimation using monocular and stereo cues. In:Proceedings of the 20th International Joint Conference on Artificial Intelligence. San Francisco, CA, USA:Morgan Kaufmann Publishers Inc., 2007. 2197-2203
    [12] Liu B Y, Gould S, Koller D. Single image depth estimation from predicted semantic labels. In:Proceedings of the 2010 IEEE Conference on Computer Vision and Pattern Recognition. San Francisco, CA, USA:IEEE, 2010. 1253-1260
    [13] Liu M M, Salzmann M, He X M. Discrete-continuous depth estimation from a single image. In:Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition. Columbus, OH, USA:IEEE, 2014. 716-723 http://dblp.uni-trier.de/db/conf/cvpr/cvpr2014.html#LiuSH14
    [14] Gupta A, Efros A A, Hebert M. Blocks world revisited:image understanding using qualitative geometry and mechanics. In:Proceedings of the 11th European Conference on Computer Vision. Heraklion, Crete, Greece:Springer, 2010. 482-496
    [15] Lee D C, Gupta A, Hebert M, Kanade T. Estimating spatial layout of rooms using volumetric reasoning about objects and surfaces. In:Proceedings of the 2010 Advances in Neural Information Processing Systems 23. Vancouver, British Columbia, Canada:Curran Associates, Inc., 2010. 1288-1296
    [16] Hedau V, Hoiem D, Forsyth D. Thinking inside the box:using appearance models and context based on room geometry. In:Proceedings of the 11th European Conference on Computer Vision. Heraklion, Crete, Greece:Springer, 2010. 224-237
    [17] Wang H Y, Gould S, Koller D. Discriminative learning with latent variables for cluttered indoor scene understanding. In:Proceedings of the 11th European Conference on Computer Vision. Heraklion, Crete, Greece:Springer, 2010. 497-510
    [18] Schwing A G, Fidler S, Pollefeys M, Urtasun R. Box in the box:joint 3D layout and object reasoning from single images. In:Proceedings of the 2013 IEEE International Conference on Computer Vision. Sydney, VIC, Australia:IEEE, 2013. 353 -360
    [19] Choi W, Chao Y W, Pantofaru C, Savarese S. Understanding indoor scenes using 3D geometric phrases. In:Proceedings of the 2013 IEEE Conference on Computer Vision and Pattern Recognition. Portland, OR, USA:IEEE, 2013. 33-40 http://ieeexplore.ieee.org/document/6618856/authors
    [20] Tsochantaridis I, Joachims T, Hofmann T, Altun Y. Large margin methods for structured and interdependent output variables. The Journal of Machine Learning Research, 2005, 6:1453-1484
    [21] Li F X, Carreira J, Sminchisescu C. Object recognition as ranking holistic figure-ground hypotheses. In:Proceedings of the 2010 IEEE Conference on Computer Vision and Pattern Recognition. San Francisco, CA, USA:IEEE, 2010. 1712-1719
    [22] Lampert C H, Blaschko M B, Hofmann T. Efficient subwindow search:a branch and bound framework for object localization. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 31(12):2129-2142 doi: 10.1109/TPAMI.2009.144
    [23] Russakovsky O, Ng A Y. A Steiner tree approach to efficient object detection. In:Proceedings of the 2010 IEEE Conference on Computer Vision and Pattern Recognition. San Francisco, CA, USA:IEEE, 2010. 1070-1077
    [24] Vijayanarasimhan S, Grauman K. Efficient region search for object detection. In:Proceedings of the 2011 IEEE Conference on Computer Vision and Pattern Recognition. Providence, RI, USA:IEEE, 2011. 1401-1408
    [25] Russell S, Norvig P. Artificial Intelligence:A Modern Approach (3rd edition). New Jersey:Pearson, 2009.
    [26] Russell B C, Torralba A, Murphy K P, Freeman W T. LabelMe:a database and web-based tool for image annotation. International Journal of Computer Vision, 2008, 77(1-3):157-173 doi: 10.1007/s11263-007-0090-8
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  2186
  • HTML全文浏览量:  235
  • PDF下载量:  391
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-01-21
  • 录用日期:  2016-07-28
  • 刊出日期:  2017-08-20

目录

    /

    返回文章
    返回