2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

适用于事件触发的分布式随机目标跟踪方法

杨旭升 张文安 俞立

杨旭升, 张文安, 俞立. 适用于事件触发的分布式随机目标跟踪方法. 自动化学报, 2017, 43(8): 1393-1401. doi: 10.16383/j.aas.2017.c150777
引用本文: 杨旭升, 张文安, 俞立. 适用于事件触发的分布式随机目标跟踪方法. 自动化学报, 2017, 43(8): 1393-1401. doi: 10.16383/j.aas.2017.c150777
YANG Xu-Sheng, ZHANG Wen-An, YU Li. Distributed Tracking Method for Maneuvering Targets withEvent-triggered Mechanism. ACTA AUTOMATICA SINICA, 2017, 43(8): 1393-1401. doi: 10.16383/j.aas.2017.c150777
Citation: YANG Xu-Sheng, ZHANG Wen-An, YU Li. Distributed Tracking Method for Maneuvering Targets withEvent-triggered Mechanism. ACTA AUTOMATICA SINICA, 2017, 43(8): 1393-1401. doi: 10.16383/j.aas.2017.c150777

适用于事件触发的分布式随机目标跟踪方法

doi: 10.16383/j.aas.2017.c150777
基金项目: 

浙江省自然科学基金 LR16F030005

国家自然科学基金 61573319

国家自然科学基金 61673351

浙江省自然科学基金 LZ15F030003

国家自然科学基金 61273117

详细信息
    作者简介:

    杨旭升 浙江工业大学信息工程学院博士研究生.主要研究方向为智能移动机器人, 无线传感器网络和信息融合估计.E-mail:yxs921@yahoo.com

    俞立 浙江工业大学信息工程学院教授.主要研究方向为无线传感器网络, 鲁棒控制和网络化控制系统.E-mail:lyu@zjut.edu.cn

    通讯作者:

    张文安 浙江工业大学信息工程学院教授.主要研究方向为信息融合估计, 网络化控制和智能移动机器人.本文通信作者.E-mail:wazhang@zjut.edu.cn

Distributed Tracking Method for Maneuvering Targets withEvent-triggered Mechanism

Funds: 

Zhejiang Provincial Natural Science Foundation of China LR16F030005

National Natural Science Foundation of China 61573319

National Natural Science Foundation of China 61673351

Zhejiang Provincial Natural Science Foundation of China LZ15F030003

National Natural Science Foundation of China 61273117

More Information
    Author Bio:

    Ph. D. candidate at the College of Information Engineering, Zhejiang University of Technology. His research interest covers intelligent mobile robots, wireless sensor networks, and information fusion estimation

    Professor at the College of Information Engineering, Zhejiang University of Technology. His research interest covers wireless sensor networks, robust control, and networked control systems

    Corresponding author: ZHANG Wen-An Professor at the College of Information Engineering, Zhejiang University of Technology. His research interest covers information fusion estimation, networked control systems, and intelligent mobile robots. Corresponding author of this paper
  • 摘要: 研究了一类基于RSSI(Received signal strength indication)测距的分布式移动目标跟踪问题,提出了一种适用于事件触发无线传感器网络(Wireless sensor networks,WSNs)的分布式随机目标跟踪方法.首先考虑移动机器人模型的不确定性,引入了带有随机参数的过程噪声协方差,应用改进平方根容积卡尔曼滤波(Square root cubature Kalman filter,SRCKF)得到局部估计;然后采用无模型CI(Covariance intersection)融合估计方法以降低随机过程噪声协方差带来的不利影响.该方法充分利用有模型和无模型方法的优势,实现系统模型和量测不理想情况下的分布式目标跟踪.基于E-puck机器人的目标跟踪实验表明,事件触发的工作模式可有效地减少能量消耗,带随机参数的滤波方法更适合于随机目标的跟踪.
    1)  本文责任编委 潘泉
  • 图  1  无线传感器网络环境下的分布式移动机器人跟踪系统

    Fig.  1  The distributed mobile robot tracking system in WSNs

    图  2  不同过程噪声协方差下的估计误差

    Fig.  2  Results of the estimation errors with different process covariances

    图  3  E-puck机器人目标跟踪实验平台

    Fig.  3  The E-puck robot-based target tracking experiment platform

    图  4  不同过程噪声协方差下的移动机器人跟踪结果

    Fig.  4  Results of the mobile robot tracking with different process covariances

    图  5  基于SRCKF的局部跟踪结果和CI融合估计结果的对比

    Fig.  5  Comparison of the SRCKF-based local estimates and the CI fusion estimates of the mobile robot tracking

    图  6  基于SRCKF的局部估计和CI融合估计 $X$ 轴误差对比

    Fig.  6  Comparison of the SRCKF-based local estimation and the CI fusion estimation errors in the $X$ -coordinate

    图  7  基于SRCKF的局部估计和CI融合估计 $Y$ 轴误差对比

    Fig.  7  Comparison of the SRCKF-based local estimation and the CI fusion estimation errors in the $Y$ -coordinate

    表  1  不同过程协方差情况下移动机器人跟踪的仿真结果

    Table  1  The simulation results of the mobile robot tracking with the different process noise covariances

    序号 q1 q2 局部1 局部2 局部3 平均 LCI CI
    1 2.0 6.0 10.7446 10.7439 10.7589 10.7052 10.6792 10.7682
    2 4.0 6.0 9.6714 9.6725 9.6676 9.6554 9.6555 9.6613
    3 8.0 10.0 9.4976 9.4978 9.4981 9.4927 9.4940 9.4899
    4 8.0 12.0 9.7339 9.7360 9.7365 9.7220 9.7289 9.7113
    5 2.0 12.0 9.5359 9.5414 9.5236 9.3224 9.3629 9.3252
    6 4.0 10.0 9.3189 9.3174 9.3135 9.2346 9.2505 9.2281
    7 6.0 8.0 9.2046 9.2055 9.2082 9.1959 9.1985 9.1948
    下载: 导出CSV
  • [1] Li X, Lille I, Falcon R, Nayak A, Stojmenovic I. Servicing wireless sensor networks by mobile robots. IEEE Communications Magazine, 2012, 50(7):147-154 doi: 10.1109/MCOM.2012.6231291
    [2] Yoo J H, Kim W, Kim H J. Event-driven Gaussian process for object localization in wireless sensor networks. In:Proceedings of the 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems. San Francisco, USA:IEEE, 2011. 2790-2795
    [3] Zhang W A, Yang X S, Yu L. Sequential fusion estimation for RSS-based mobile robots localization with event-driven WSNs. IEEE Transactions on Industrial Informatics, 2016, 12(4):1519-1528 doi: 10.1109/TII.2016.2585350
    [4] Chang D C, Fang M W. Bearing-only maneuvering mobile tracking with nonlinear filtering algorithms in wireless sensor networks. IEEE Systems Journal, 2014, 8(1):160-170 doi: 10.1109/JSYST.2013.2260641
    [5] Zickler S, Veloso M. RSS-based relative localization and tethering for moving robots in unknown environments. In:Proceedings of the 2010 IEEE International Conference on Robotics and Automation. Anchorage, USA:IEEE, 2010. 5466 -5471
    [6] Menegatti E, Zanella A, Zilli S, Zorzi F, Pagello E. Range-only slam with a mobile robot and a wireless sensor networks. In:Proceedings of the 2009 IEEE International Conference on Robotics and Automation. Kobe, Japan:IEEE, 2009. 8-14
    [7] Luo Q H, Peng Y, Li J B, Peng X Y. RSSI-based localization through uncertain data mapping for wireless sensor networks. IEEE Sensors Journal, 2016, 16(9):3155-3162 doi: 10.1109/JSEN.2016.2524532
    [8] 岳元龙, 左信, 罗雄麟.提高测量可靠性的多传感器数据融合有偏估计方法.自动化学报, 2014, 40(9):1843-1852 http://www.aas.net.cn/CN/abstract/abstract18453.shtml

    Yue Yuan-Long, Zuo Xin, Luo Xiong-Lin. Improving measurement reliability with biased estimation for multi-sensor data fusion. Acta Automatica Sinica, 2014, 40(9):1843-1852 http://www.aas.net.cn/CN/abstract/abstract18453.shtml
    [9] 汤文俊, 张国良, 曾静, 孙一杰, 吴晋.一种适用于稀疏无线传感器网络的改进分布式UIF算法.自动化学报, 2014, 40(11):2490-2498 http://www.aas.net.cn/CN/abstract/abstract18525.shtml

    Tang Wen-Jun, Zhang Guo-Liang, Zeng Jing, Sun Yi-Jie, Wu Jin. An improved distributed unscented information filter algorithm for sparse wireless sensor networks. Acta Automatica Sinica, 2014, 40(11):2490-2498 http://www.aas.net.cn/CN/abstract/abstract18525.shtml
    [10] 杨文, 侍洪波, 汪小帆.卡尔曼一致滤波算法综述.控制与决策, 2011, 26(4):481-488 http://www.cnki.com.cn/Article/CJFDTOTAL-KZYC201104002.htm

    Yang Wen, Shi Hong-Bo, Wang Xiao-Fan. A survey of consensus based Kalman filtering algorithm. Control and Decision, 2011, 26(4):481-488 http://www.cnki.com.cn/Article/CJFDTOTAL-KZYC201104002.htm
    [11] Vercauteren T, Wang X D. Decentralized sigma-point information filters for target tracking in collaborative sensor networks. IEEE Transactions on Signal Processing, 2005, 53(8):2997-3009 doi: 10.1109/TSP.2005.851106
    [12] Li W L, Jia Y M. Consensus-based distributed multiple model UKF for jump Markov nonlinear systems. IEEE Transactions on Automatic Control, 2012, 57(1):227-233 doi: 10.1109/TAC.2011.2161838
    [13] Arasaratnam I, Haykin S. Cubature Kalman filters. IEEE Transactions on Automatic Control, 2009, 54(6):1254-1269 doi: 10.1109/TAC.2009.2019800
    [14] 魏喜庆, 宋申民.无模型容积卡尔曼滤波及其应用.控制与决策, 2013, 28(5):769-773 http://www.cnki.com.cn/Article/CJFDTOTAL-KZYC201305025.htm

    Wei Xi-Qing Song Shen-Min. Model-free cubature Kalman filter and its application. Control and Decision, 2013, 28(5):769-773 http://www.cnki.com.cn/Article/CJFDTOTAL-KZYC201305025.htm
    [15] 赵琳, 王小旭, 孙明, 丁继成, 闫超.基于极大后验估计和指数加权的自适应UKF滤波算法.自动化学报, 2010, 36(7):1007-1019 http://www.aas.net.cn/CN/abstract/abstract13751.shtml

    Zhao Lin, Wang Xiao-Xu, Sun Ming, Ding Ji-Cheng, Yan Chao. Adaptive UKF filtering algorithm based on maximum a posterior estimation and exponential weighting. Acta Automatica Sinica, 2010, 36(7):1007-1019 http://www.aas.net.cn/CN/abstract/abstract13751.shtml
    [16] 王璐, 李光春, 乔相伟, 王兆龙, 马涛.基于极大似然准则和最大期望算法的自适应UKF算法.自动化学报, 2012, 38(7):1200-1210 http://www.aas.net.cn/CN/abstract/abstract13671.shtml

    Wang Lu, Li Guang-Chun, Qiao Xiang-Wei, Wang Zhao-Long, Ma Tao. An adaptive UKF algorithm based on maximum likelihood principle and expectation maximization algorithm. Acta Automatica Sinica, 2012, 38(7):1200-1210 http://www.aas.net.cn/CN/abstract/abstract13671.shtml
    [17] Jwo D J, Wang S H. Adaptive fuzzy strong tracking extended Kalman filtering for GPS navigation. IEEE Sensors Journal, 2007, 7(5):778-789 doi: 10.1109/JSEN.2007.894148
    [18] Yang X S, Zhang W A, Yu L, Xing K X. Multi-rate distributed fusion estimation for sensor network-based target tracking. IEEE Sensors Journal, 2016, 16(5):1233-1242 doi: 10.1109/JSEN.2015.2497464
    [19] Zhang W A, Chen B, Chen M. Hierarchical fusion estimation for clustered asynchronous sensor networks. IEEE Transactions on Automatic Control, 2016, 61(10):3064-3069 doi: 10.1109/TAC.2015.2498701
    [20] Deng Z L, Zhang P, Qi W J, Yuan G, Liu J F. The accuracy comparison of multisensor covariance intersection fuser and three weighting fusers. Information Fusion, 2013, 14(2):177 -185 doi: 10.1016/j.inffus.2012.05.005
    [21] Bolognani S, Tubiana L, Zigliotto M. Extended Kalman filter tuning in sensorless PMSM drives. IEEE Transactions on Industry Applications, 2003, 39(6):1741-1747 doi: 10.1109/TIA.2003.818991
    [22] Uhlmann J K. Covariance consistency methods for fault-tolerant distributed data fusion. Information Fusion, 2003, 4(3):201-215 doi: 10.1016/S1566-2535(03)00036-8
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  1986
  • HTML全文浏览量:  305
  • PDF下载量:  870
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-11-18
  • 录用日期:  2016-09-05
  • 刊出日期:  2017-08-20

目录

    /

    返回文章
    返回