2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

双率采样系统的基于观测器的网络化H控制

马伟伟 贾新春 张大伟

马伟伟, 贾新春, 张大伟. 双率采样系统的基于观测器的网络化H∞控制. 自动化学报, 2015, 41(10): 1788-1797. doi: 10.16383/j.aas.2015.c150046
引用本文: 马伟伟, 贾新春, 张大伟. 双率采样系统的基于观测器的网络化H控制. 自动化学报, 2015, 41(10): 1788-1797. doi: 10.16383/j.aas.2015.c150046
MA Wei-Wei, JIA Xin-Chun, ZHANG Da-Wei. Observer-based Networked H∞ Control for Dualrate Sampling Systems. ACTA AUTOMATICA SINICA, 2015, 41(10): 1788-1797. doi: 10.16383/j.aas.2015.c150046
Citation: MA Wei-Wei, JIA Xin-Chun, ZHANG Da-Wei. Observer-based Networked H Control for Dualrate Sampling Systems. ACTA AUTOMATICA SINICA, 2015, 41(10): 1788-1797. doi: 10.16383/j.aas.2015.c150046

双率采样系统的基于观测器的网络化H控制

doi: 10.16383/j.aas.2015.c150046
基金项目: 

国家自然科学基金(61374059, 61403240), 山西省回国留学人员科研资助项目(2012-001), 山西省国际科技合作项目(2013081040), 山西省优秀创新项目(20113007)资助

详细信息
    作者简介:

    马伟伟 山西大学数学科学学院博士研究生.主要研究方向为网络化控制系统和多率采样系统. E-mail: xiucailing@live.cn

    通讯作者:

    贾新春 山西大学数学科学学院教授. 主要研究方向为网络化控制系统, 模糊控制和智能系统. 本文通信作者. E-mail: xchjia@sxu.edu.cn

Observer-based Networked H Control for Dualrate Sampling Systems

Funds: 

Supported by National Natural Science Foundation of China (61374059, 61403240), Research Project Supported by Shanxi Scholarship Council of China (2012-001), International Science and Technology Cooperation Program of Shanxi Province (20130 81040), and Graduate Excellent Innovative Project of Shanxi Province (20113007)

  • 摘要: 研究一类带有网络传输时滞和丢包的双率采样系统的网络化H∞控制问题. 假设对象状态变量被分成两个分向量, 同一分向量的状态变量由同一类传感器以相同周期采样, 且两类传感器的采样频率不同. 采样后的分向量分别通过非理想网络传输到控制器端. 考虑到双率采样、网络传输时滞和丢包现象, 引入同步观测器来估计对象状态并设计基于估计状态的控制器来镇定双率采样系统. 基于这个思路, 将双率采样的网络化控制系统建模为带有两个时变时滞的连续系统. 利用Lyapunov-Krasovskii泛函方法, 以矩阵不等式形式给出该系统的稳定性判据和控制器设计方法. 最后, 通过数值例子验证所提方法的有效性.
  • [1] Zhang L X, Gao H J, Kaynak O. Network-induced constraints in networked control systems-a survey. IEEE Transactions on Industrial Informatics, 2013, 9(1): 403-416
    [2] You Ke-You, Xie Li-Hua. Survey of recent progress in networked control systems. Acta Automatica Sinica, 2013, 39(2): 101-118(游科友, 谢立华. 网络控制系统的最新研究综述. 自动化学报, 2013, 39(2): 101-118)
    [3] Yang Yuan-Hua, Fu Min-Yue, Zhang Huan-Shui. State estimation subject to random communication delays. Acta Automatica Sinica, 2013, 39(3): 237-243(杨园华, 付敏跃, 张焕水. 带有随机通信时滞的状态估计. 自动化学报, 2013, 39(3): 237-243)
    [4] Bamieh B, Pearson J B, Francis B A, Tannenbaum A. A lifting technique for linear periodic systems with applications to sampled-data control. Systems and Control Letters, 1991, 17(2): 79-88
    [5] Fridman E, Seuret A, Richard J P. Robust sampled-data stabilization of linear systems: an input delay approach. Automatica, 2004, 40(8): 1441-1446
    [6] Fridman E. A refined input delay approach to sampled-data control. Automatica, 2010, 46(2): 421-427
    [7] Fridman E, Shaked U, Suplin V. Input/output delay approach to robust sampled-data control. Systems and Control Letters, 2005, 54(3): 271-282
    [8] Wu Yao, Luo Xiong-Lin. Robustness analysis of Kalman filtering algorithm for multirate systems. Acta Automatica Sinica, 2012, 38(2): 156-174(吴瑶, 罗雄麟. 多率系统Kalman滤波算法的鲁棒性分析. 自动化学报, 2012, 38(2): 156-174)
    [9] Nemani M, Tsao T C, Hutchinson S. Multi-rate analysis and design of visual feedback digital servo-control system. Journal of Dynamic Systems, Measurement, and Control, 1994, 116(1): 45-55
    [10] Kranc G. Input-output analysis of multirate feedback systems. IRE Transactions on Automatic Control, 1957, 3(1): 21-28
    [11] Kalman R E, Bertram J E. A unified approach to the theory of sampling systems. Journal of the Franklin Institute, 1959, 267(5): 405-436
    [12] Zamani M, Bottegal G, Anderson B D O. On the properties of linear multirate systems with coprime output rates. In: Proceedings of the 52nd Annual Conference on Decision and Control (CDC). Firenze, Italy, USA: IEEE, 2013. 2734 -2739
    [13] Yu B, Shi Y, Huang H M. l2-l∞ filtering for multirate systems based on lifted models. Circuits, Systems and Signal Processing, 2008, 27(5): 699-711
    [14] Jia X C, Li L, Zhang D W, Chi X B, Fan X. Exponential stabilization of dual-rate control system: a switched system approach. In: Proceedings of the 2013 American Control Conference (ACC). Washington, DC, USA: IEEE, 2013. 48 -53
    [15] Moarref M, Rodrigues L. Observer design for linear multi-rate sampled-data systems. In: Proceedings of the 2014 American Control Conference (ACC). Portland, Oregon, USA: IEEE, 2014. 5319-5324
    [16] Jin J, Wang Z W, Luo D S. Model-based control scheme for networked multi-rate sampling systems. In: Proceedings of the 2009 6th International Conference on Measuring Technology and Mechatronics Automation. Zhangjiajie, China: IEEE, 2009. 812-815
    [17] Glasson D. Development and applications of multirate digital control. IEEE Control Systems Magazine, 1983, 3(4): 2 -8
    [18] Mizuochi M, Tsuji T, Ohnishi K. Multirate sampling method for acceleration control system. IEEE Transactions on Industrial Electronics, 2007, 54(3): 1462-1471
    [19] El Ghaoui L, Oustry F, AitRami M. A cone complementarity linearization algorithm for static output-feedback and related problems. IEEE Transactions on Automatic Control, 1997, 42(8): 1171-1176
    [20] Hu S L, Yue D. L2-gain analysis of event-triggered networked control systems: a discontinuous Lyapunov functional approach. International Journal of Robust and Nonlinear Control, 2013, 23(11): 1277-1300
  • 加载中
计量
  • 文章访问数:  1573
  • HTML全文浏览量:  84
  • PDF下载量:  1023
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-01-26
  • 修回日期:  2015-05-28
  • 刊出日期:  2015-10-20

目录

    /

    返回文章
    返回