[1]
|
Donoho D L. High-dimensional data analysis: the curses and blessings of dimensionality. American Mathematical Society Math Challenges Lecture, 2000. 1-32
|
[2]
|
从稀疏约束到低秩约束优化. 信号处理, 2012, 28(5): 609-623)
|
[3]
|
Parsons L, Haque E, Liu H. Subspace clustering for high dimensional data: a review. ACM SIGKDD Explorations Newsletter, 2004, 6(1): 90-105
|
[4]
|
理论与应用. 自动化学报, 2013, 39(7): 981-994)
|
[5]
|
Vidal R. Subspace clustering. IEEE Signal Processing Magazine, 2011, 28(2): 52-68
|
[6]
|
系统工程与电子技术, 2014, 36(3): 580-585)
|
[7]
|
Agrawal R, Gehrke J, Gunopulos D, Raghavan P. Automatic subspace clustering of high dimensional data for data mining applications. ACM SIGMOD Record, 1998, 27(2): 94-105
|
[8]
|
西安电子科技大学学报(自然科学版), 2013, 40(5): 86-91)
|
[9]
|
Lu L, Vidal R. Combined central and subspace clustering for computer vision applications. In: Proceedings of the 23rd International Conference on Machine Learning (ICML). Pittsburgh, USA: ACM, 2006. 593-600
|
[10]
|
Hong W, Wright J, Huang K, Ma Y. Multi-scale hybrid linear models for lossy image representation. IEEE Transactions on Image Processing, 2006, 15(12): 3655-3671
|
[11]
|
Yang A Y, Wright J, Ma Y, Sastry S. Unsupervised segmentation of natural images via lossy data compression. Computer Vision and Image Understanding, 2008, 110(2): 212-225
|
[12]
|
Vidal R, Soatto S, Ma Y, Sastry S. An algebraic geometric approach to the identification of a class of linear hybrid systems. In: Proceedings of the 42nd IEEE Conference on Decision and Control. Maui, HI, USA: IEEE, 2003. 167-172
|
[13]
|
Boult T E, Brown L G. Factorization-based segmentation of motions. In: Proceedings of the 1991 IEEE Workshop on Visual Motion. Princeton, NJ: IEEE, 1991. 179-186
|
[14]
|
Wu Y, Zhang Z Y, Huang T S, Lin J Y. Multibody grouping via orthogonal subspace decomposition. In: Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR). Kauai, HI, USA: IEEE, 2001. 2: 252-257
|
[15]
|
Vidal R, Ma Y, Sastry S. Generalized principal component analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(12): 1945-1959
|
[16]
|
Rao S R, Yang A Y, Sastry S S, Ma Y. Robust algebraic segmentation of mixed rigid-body and planar motions from two views. International Journal of Computer Vision, 2010, 88(3): 425-446
|
[17]
|
Ma Y, Yang A Y, Derksen H, Fossum R. Estimation of subspace arrangements with applications in modeling and segmenting mixed data. SIAM Review, 2008, 50(3): 413-458
|
[18]
|
Ho J, Yang M H, Lim J, Lee K C, Kriegman D. Clustering appearances of objects under varying illumination conditions. In: Proceedings of the 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR). Madison, WI, USA: IEEE, 2003. 1: 11-18
|
[19]
|
Bradley P S, Mangasarian O L. k-plane clustering. Journal of Global Optimization, 2000, 16(1): 23-32
|
[20]
|
Tipping M E, Bishop C M. Mixtures of probabilistic principal component analyzers. Neural Computation, 1999, 11(2): 443-482
|
[21]
|
Fischler M A, Bolles R C. Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Communications of the ACM, 1981, 24: 381-395
|
[22]
|
Ma Y, Derksen H, Hong W, Wright J. Segmentation of multivariate mixed data via lossy data coding and compression. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29(9): 1546-1562
|
[23]
|
Von Luxburg U. A tutorial on spectral clustering. Statistics and Computing, 2007, 17(4): 395-416
|
[24]
|
Chen G L, Lerman G. Spectral curvature clustering (SCC). International Journal of Computer Vision, 2009, 81(3): 317-330
|
[25]
|
Lauer F, Schnorr C. Spectral clustering of linear subspaces for motion segmentation. In: Proceedings of the 12th IEEE International Conference on Computer Vision (ICCV). Kyoto, Japan: IEEE, 2009. 678-685
|
[26]
|
Shi J B, Malik J. Normalized cuts and image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(8): 888-905
|
[27]
|
Chen S S, Donoho D L, Saunders M A. Atomic decomposition by basis pursuit. SIAM Journal on Scientific Computing, 1998, 20(1): 33-61
|
[28]
|
Candés E J. Compressive sampling. In: Proceedings of the 2006 International Congress of Mathematics. Madrid, Spain: the European Mathematical Society, 2006. 1433-1452
|
[29]
|
Donoho D L. Compressed sensing. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306
|
[30]
|
Davenport M A, Duarte M F, Eldar Y C, Kutyniok G. Introduction to compressed sensing. Compressed Sensing: Theory and Applications. Cambridge: Cambridge University Press, 2012.
|
[31]
|
Liu Fang, Wu Jiao, Yang Shu-Yuan, Jiao Li-Cheng. Research advances on structured compressive sensing. Acta Automatica Sinica, 2013, 39(12): 1980-1995 (刘芳, 武娇, 杨淑媛, 焦李成. 结构化压缩感知研究进展. 自动化学报,
|
[32]
|
Elad M, Aharon M. Image denoising via sparse and redundant representations over learned dictionaries. IEEE Transactions on Image Processing, 2006, 15(12): 3736-3745
|
[33]
|
Li T, Wang W W, Feng X C, Xu L. Image denoising using low-rank dictionary and sparse representation. In: Proceedings of the 10th International Conference on Computational Intelligenceand Security (CIS'2014). Kunming, Yunnan Province, China: IEEE. 2014. 228-232
|
[34]
|
Yang J C, Wright J, Huang T S, Ma Y. Image super-resolution via sparse representation. IEEE Transactions on Image Processing, 2010, 19(11): 2861-2873
|
[35]
|
Starck J L, Elad M, Donoho D L. Image decomposition via the combination of sparse representations and a variational approach. IEEE Transactions on Image Processing, 2005, 14(10): 1570-1582
|
[36]
|
Elhamifar E, Vidal R. Sparse subspace clustering. In: Proceedings of the 2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR). Miami, FL, USA: IEEE, 2009. 2790-2797
|
[37]
|
Elhamifar E, Vidal R. Sparse subspace clustering: algorithm, theory, and applications. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(11): 2765-2781
|
[38]
|
Elhamifar E, Vidal R. Sparsity in unions of subspaces for classification and clustering of high-dimensional data. In: Proceedings of the 49th Annual Allerton Conference on Communication, Control, and Computing. Monticello, Illinois, USA: IEEE, 2011. 1085-1089
|
[39]
|
Li C G, Guo J, Zhang H G. Local sparse representation based classification. In: Proceedings of the 20th International Conference on Pattern Recognition (ICPR). Istanbul, Turkey: IEEE, 2010. 649-652
|
[40]
|
Yin J, Liu Z H, Jin Z, Yang W K. Kernel sparse representation based classification. Neurocomputing, 2012, 77(1): 120-128
|
[41]
|
Wright J, Yang A Y, Ganesh A, Sastry S S, Ma Y. Robust face recognition via sparse representation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 31(2): 210-227
|
[42]
|
Zhang L, Yang M, Feng X C. Sparse representation or collaborative representation: which helps face recognition? In: Proceedings of the 2011 IEEE International Conference on Computer Vision (ICCV). Barcelona, Spain: IEEE, 2011. 471-478
|
[43]
|
Wright J, Ma Y, Mairal J, Sapiro G, Huang T S, Yan S C. Sparse representation for computer vision and pattern recognition. Proceedings of the IEEE, 2010, 98(6): 1031-1044
|
[44]
|
Zhang H Y, Lin Z C, Zhang C. A counterexample for the validity of using nuclear norm as a convex surrogate of rank. Machine Learning and Knowledge Discovery in Databases. Berlin Heidelberg: Springer, 2013. 226-241
|
[45]
|
Candes E J, Tao T. The power of convex relaxation: near-optimal matrix completion. IEEE Transactions on Information Theory, 2010, 56(5): 2053-2080
|
[46]
|
Ma Jian-Wei, Xu Jie, Bao Yue-Quan, Yu Si-Wei. Compressive sensing and its application: from sparse to low-rank regularized optimization. Signal Processing, 2012, 28(5): 609-623 (马坚伟, 徐杰, 鲍跃全, 于四伟. 压缩感知及其应用:
|
[47]
|
Peng Yi-Gang, Suo Jin-Li, Dai Qiong-Hai, Xu Wen-Li. From compressed sensing to low-rank matrix recovery: theory and applications. Acta Automatica Sinica, 2013, 39(7): 981-994 (彭义刚, 索津莉, 戴琼海, 徐文立. 从压缩传感到低秩矩阵恢复:
|
[48]
|
Candés E J, Recht B. Exact matrix completion via convex optimization. Foundations of Computational Mathematics, 2009, 9(6): 717-772
|
[49]
|
Cai J F, Candés E J, Shen Z W. A singular value thresholding algorithm for matrix completion. SIAM Journal on Optimization, 2010, 20(4): 1956-1982
|
[50]
|
Candés E J, Li X D, Ma Y, Wright J. Robust principal component analysis? Journal of the ACM, 2011, 58(3): 11.
|
[51]
|
Liu G C, Lin Z C, Yu Y. Robust subspace segmentation by low-rank representation. In: Proceedings of the 27th International Conference on Machine Learning (ICML). Haifa, Israel, 2010. 663-670
|
[52]
|
Liu G C, Lin Z C, Yan S C, Sun J, Yu Y, Ma Y. Robust recovery of subspace structures by low-rank representation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(1): 171-184
|
[53]
|
Zhang Y, Jiang Z L, Davis L S. Learning structured low-rank representations for image classification. In: Proceedings of the 2013 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR). Portland, OR, USA: IEEE, 2013. 676-683
|
[54]
|
Li L Y, Li S, Fu Y. Learning low-rank and discriminative dictionary for image classification. Image and Vision Computing, 2014, 32(10): 814-823
|
[55]
|
Chen C F, Wei C P, Wang Y C F. Low-rank matrix recovery with structural incoherence for robust face recognition. In: Proceedings of the 2012 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR). Providence, RI: IEEE, 2012. 2618-2625
|
[56]
|
Zheng Y G, Zhang X R, Yang S Y, Jiao L C. Low-rank representation with local constraint for graph construction. Neurocomputing, 2013, 122: 398-405
|
[57]
|
Vidal R, Favaro P. Low rank subspace clustering (LRSC). Pattern Recognition Letters, 2014, 43: 47-61
|
[58]
|
Costeira J P, Kanade T. A multibody factorization method for independently moving objects. International Journal of Computer Vision, 1998, 29(3): 159-179
|
[59]
|
Hu H, Lin Z C, Feng J J, Zhou J. Smooth representation clustering. In: Proceedings of the 2014 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR). Columbus, OH, USA: IEEE, 2014. 3834-3841
|
[60]
|
He X F, Niyogi P. Locality preserving projections. Advances in Neural Information Processing Systems, 2003, 16: 153-160
|
[61]
|
Liu W F, Pokharel P P, Principe J C. Correntropy: properties and applications in non-Gaussian signal processing. IEEE Transactions on Signal Processing, 2007, 55(11): 5286-5298
|
[62]
|
Lu C Y, Tang J H, Lin M, Lin L, Yan S C, Lin Z C. Correntropy induced L2 graph for robust subspace clustering. In: Proceedings of the 2013 IEEE International Conference on Computer Vision (ICCV). Sydney, NSW, Australia: IEEE, 2013. 1801-1808
|
[63]
|
Zhang Y Y, Sun Z N, He R, Tan T N. Robust subspace clustering via half-quadratic minimization. In: Proceedings of the 2013 IEEE International Conference on Computer Vision (ICCV). Sydney, NSW, Australia: IEEE, 2013. 3096-3103
|
[64]
|
Feng J S, Lin Z C, Xu H, Yan S C. Robust subspace segmentation with block-diagonal prior. In: Proceedings of the 2014 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR). Columbus, OH, USA: IEEE, 2014. 3818-3825
|
[65]
|
Elhamifar E, Vidal R. Clustering disjoint subspaces via sparse representation. In: Proceedings of the 2010 International Conference on Acoustics, Speech, and Signal Processing (ICASSP). Dallas, Texas, USA: IEEE, 2010. 1926-1929
|
[66]
|
Wang S S, Yuan X T, Yao T S, Yan S C, Shen J L. Efficient subspace segmentation via quadratic programming. In: Proceedings of the 25th AAAI Conference on Artificial Intelligence (AAAI). San Francisco, California, USA: AAAI Press, 2011. 519-524.
|
[67]
|
Luo D J, Nie F P, Ding C, Huang H. Multi-subspace representation and discovery. Machine Learning and Knowledge Discovery in Databases. Berlin Heidelberg: Springer, 2011. 405-420
|
[68]
|
Liu G C, Yan S C. Latent low-rank representation for subspace segmentation and feature extraction. In: Proceedings of the 2011 IEEE International Conference on Computer Vision (ICCV). Barcelona, Spain: IEEE, 2011. 1615-1622
|
[69]
|
Zhuang L S, Gao H Y, Lin Z C, Ma Y, Zhang X, Yu N H. Non-negative low rank and sparse graph for semi-supervised learning. In: Proceedings of the 2012 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR). Providence, RI: IEEE, 2012. 2328-2335
|
[70]
|
Lu C Y, Min H, Zhao Z Q, Zhu L, Huang D S, Yan S C. Robust and efficient subspace segmentation via least squares regression. In: Proceedings of the the 2012 Computer Vision-European Conference on Computer Vision (ECCV). Florence, Italy: Springer Berlin Heidelberg, 2012. 347-360
|
[71]
|
Pham D S, Budhaditya S, Phung D, Venkatesh S. Improved subspace clustering via exploitation of spatial constraints. In: Proceedings of the 2012 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR). Providence, RI: IEEE, 2012. 550-557
|
[72]
|
Saha B, Pham D S, Phung D, Venkatesh S. Sparse subspace clustering via group sparse coding. In: Proceedings of the 2013 SIAM International Conference on Data Mining (SDM 2013). Austin, Texas, USA: Society for Industrial and Applied Mathematics, 2013. 130-138
|
[73]
|
Lu C Y, Feng J S, Lin Z C, Yan S C. Correlation adaptive subspace segmentation by Trace Lasso. In: Proceedings of the 2013 IEEE International Conference on Computer Vision (ICCV). Sydney, Australia: IEEE, 2013. 1345-1352
|
[74]
|
Soltanolkotabi M, Cand\'{es E J. A geometric analysis of subspace clustering with outliers. The Annals of Statistics, 2012, 40(4): 2195-2238
|
[75]
|
Lin Z C, Chen M M, Ma Y. The augmented Lagrange multiplier method for exact recovery of corrupted low-rank matrices. UIUC Technical Report UILU-ENG-09-2215, arXiv preprint arXiv: 1009.5055, 2010
|
[76]
|
Nikolova M, Ng M K. Analysis of half-quadratic minimization methods for signal and image recovery. SIAM Journal on Scientific Computing, 2005, 27(3): 937-966
|
[77]
|
Lin Z C, Liu R S, Su Z X. Linearized alternating direction method with adaptive penalty for low-rank representation. Advances in Neural Information Processing Systems, 2011. 612-620
|
[78]
|
Lin Z C, Liu R S, Li H. Linearized alternating direction method with parallel splitting and adaptive penalty for separable convex programs in machine learning. Machine Learning, 2015, 99(2): 287-325
|
[79]
|
Patel V M, Van Nguyen H, Vidal R. Latent space sparse subspace clustering. In: Proceedings of the 2013 IEEE International Conference on Computer Vision (ICCV). Darling Harbour, Sydney: IEEE, 2013. 225-232
|
[80]
|
Zhang X, Sun F C, Liu G C, Ma Y. Fast low-rank subspace segmentation. IEEE Transactions on Knowledge and Data Engineering, 2014, 26(5): 1293-1297
|
[81]
|
Liu Y Y, Jiao L C, Shang F H. An efficient matrix factorization based low-rank representation for subspace clustering. Pattern Recognition, 2013, 46(1): 284-292
|
[82]
|
Liu Y Y, Jiao L C, Shang F H, Yin F, Liu F. An efficient matrix bi-factorization alternative optimization method for low-rank matrix recovery and completion. Neural Networks, 2013, 48: 8-18
|
[83]
|
Liu Y Y, Jiao L C, Shang F H. A fast tri-factorization method for low-rank matrix recovery and completion. Pattern Recognition, 2013, 46(1): 163-173
|
[84]
|
Favaro P, Vidal R, Ravichandran A. A closed form solution to robust subspace estimation and clustering. In: Proceedings of the 2011 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR). Providence, RI: IEEE, 2011. 1801-1807
|
[85]
|
Peng X, Zhang L, Yi Z. Scalable sparse subspace clustering. In: Proceedings of the 2013 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR). Portland, OR, USA: IEEE, 2013. 430-437
|
[86]
|
Ma L, Wang C H, Xiao B H, Zhou W. Sparse representation for face recognition based on discriminative low-rank dictionary learning. In: Proceedings of the 2012 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR). Providence, RI: IEEE, 2012. 2586-2593
|
[87]
|
Qian J J, Yang J, Zhang F L, Lin Z C. Robust low-rank regularized regression for face fecognition with occlusion. In: Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). Columbus, Ohio, USA: IEEE, 2014. 21-26
|
[88]
|
Gui J, Sun Z N, Jia W, Hu R X, Lei Y K, Ji S W. Discriminant sparse neighborhood preserving embedding for face recognition. Pattern Recognition, 2012, 45(8): 2884-2893
|
[89]
|
Tron R, Vidal R. A benchmark for the comparison of 3-d motion segmentation algorithms. In: Proceedings of the 2007 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR). Minneapolis, MN: IEEE, 2007. 1-8
|
[90]
|
Rao S R, Tron R, Vidal R, Ma Y. Motion segmentation via robust subspace separation in the presence of outlying, incomplete, or corrupted trajectories. In: Proceedings of the 2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR). Anchorage, AK: IEEE, 2008. 1-8
|
[91]
|
Rao S R, Tron R, Vidal R, Ma Y. Motion segmentation in the presence of outlying, incomplete, or corrupted trajectories. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(10): 1832-1845
|
[92]
|
Li Tao, Wang Wei-Wei, Zhai Dong, Jia Xi-Xi. Weighted-sparse subspace clustering method for image segmentation. Systems Engineering and Electronics, 2014, 36(3): 580-585 (李涛, 王卫卫, 翟栋, 贾西西. 图像分割的加权稀疏子空间聚类方法.
|
[93]
|
Zhang Wen-Juan, Feng Xiang-Chu. Image super-pixels segmentation method based on the non-convex low-rank and sparse constraints. Journal of Xidian University, 2013, 40(5): 86-91 (张文娟, 冯象初. 非凸低秩稀疏约束的图像超像素分割方法.
|
[94]
|
Cheng B, Liu G C, Wang J D, Huang Z Y, Yan S C. Multi-task low-rank affinity pursuit for image segmentation. In: Proceedings of the 2011 International Conference on Computer Vision (ICCV). Barcelona, Spain: IEEE, 2011. 2439-2446
|
[95]
|
Lang C Y, Liu G C, Yu J, Yan S C. Saliency detection by multitask sparsity pursuit. IEEE Transactions on Image Processing, 2012, 21(3): 1327-1338
|
[96]
|
Basri R, Jacobs D W. Lambertian reflectance and linear subspaces. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25(2): 218-233
|
[97]
|
Lee K C, Ho J, Kriegman D. Acquiring linear subspaces for face recognition under variable lighting. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(5): 684-698
|
[98]
|
Oja E. Simplified neuron model as a principal component analyzer. Journal of Mathematical Biology, 1982, 15(3): 267-273
|
[99]
|
Babacan S D, Luessi M, Molina R, Katsaggelos A K. Sparse Bayesian methods for low-rank matrix estimation. IEEE Transactions on Signal Processing, 2012, 60(8): 3964-3977
|
[100]
|
Zhao Q, Meng D Y, Xu Z B, Zuo W M, Zhang L. Robust principal component analysis with complex noise. In: Proceedings of the 31st International Conference on Machine Learning (ICML). Beijing, China, 2014. 55-63
|
[101]
|
, 39(12): 1980-1995)
|