2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于二阶广义全变差正则项的模糊图像恢复算法

任福全 邱天爽

任福全, 邱天爽. 基于二阶广义全变差正则项的模糊图像恢复算法. 自动化学报, 2015, 41(6): 1166-1172. doi: 10.16383/j.aas.2015.c130616
引用本文: 任福全, 邱天爽. 基于二阶广义全变差正则项的模糊图像恢复算法. 自动化学报, 2015, 41(6): 1166-1172. doi: 10.16383/j.aas.2015.c130616
REN Fu-Quan, QIU Tian-Shuang. Blurred Image Restoration Method Based on Second-order Total Generalized Variation Regularization. ACTA AUTOMATICA SINICA, 2015, 41(6): 1166-1172. doi: 10.16383/j.aas.2015.c130616
Citation: REN Fu-Quan, QIU Tian-Shuang. Blurred Image Restoration Method Based on Second-order Total Generalized Variation Regularization. ACTA AUTOMATICA SINICA, 2015, 41(6): 1166-1172. doi: 10.16383/j.aas.2015.c130616

基于二阶广义全变差正则项的模糊图像恢复算法

doi: 10.16383/j.aas.2015.c130616
基金项目: 

国家自然科学基金(61172108, 61139001, 81241059), 国家科技支撑计划基金(2012BAJ18B06) 资助

详细信息
    作者简介:

    任福全 大连理工大学电子信息与电气工程学部博士研究生. 2010 年获得大连理工大学数学系硕士学位. 主要研究方向为图像恢复与重建.E-mail: renfuquan@163.com

    通讯作者:

    邱天爽 大连理工大学电子信息与电气工程学部教授. 主要研究方向为信号处理与医学图像处理. E-mail: qiutsh@dlut.edu.cn

Blurred Image Restoration Method Based on Second-order Total Generalized Variation Regularization

Funds: 

Support by National Natural Science Foundation of China (61172108, 61139001, 81241059) and the Science and Technology Support Program of China (2012BAJ18B06)

  • 摘要: 针对图像去模糊问题, 采用二阶广义全变差作为修复图像的正则项构建恢复模型, 并针对重建模型的高阶与非光滑特性, 给出了基于分裂Bregman 迭代的快速算法. 实验结果表明, 该模型和数值算法能够较好地恢复被噪声和模糊污染的图像, 同时可以很好地保留图像的纹理和细节信息.
  • [1] Lucy B. An iterative technique for the rectification of observed distributions. Astronomical Journal, 1974, 79(6): 745-754
    [2] [2] Richardson W H. Bayesian-based iterative method of image restoration. Journal of the Optical Society of America, 1972, 62(1): 55-59
    [3] [3] Krishnan D, Fergus R. Fast image deconvolution using hyper-Laplacian priors. In: Proceedings of the 2009 Advances in Neural Information Processing Systems. Vancouver, British Columbia: Curran Associates, Inc., 2009. 1033- 1041
    [4] [4] Galatsanos N P, Katsaggelos A K. Methods for choosing the regularization parameter and estimating the noise variance in image restoration and their relation. IEEE Transactions on Image Processing, 1992, 1(3): 322-336
    [5] [5] Wang W L, Yang J F, Yin W T, Zhang Y. A new alternating minimization algorithm for total variation image reconstruction. SIAM Journal on Imaging Sciences, 2008, 1(3): 248- 272
    [6] [6] Babacan S D, Molina R, Katsaggelos A K. Variational Bayesian blind deconvolution using a total variation prior. IEEE Transactions on Image Processing, 2009, 18(1): 12- 26
    [7] He Chuan, Hu Chang-Hua, Zhang Wei, Shi Biao. Box-constrained total-variation image restoration with automatic parameter estimation. Acta Automatica Sinica, 2014, 40(8): 1804-1811(何川, 胡昌华, 张伟, 师彪. 区间约束的全变差图像复原和自动参数估计. 自动化学报, 2014, 40(8): 1804-1811)
    [8] [8] Bioucas-Dias J M. Bayesian wavelet-based image deconvolution: a GEM algorithm exploiting a class of heavy-tailed priors. IEEE Transactions on Image Processing, 2006, 15(4): 937-951
    [9] [9] Zhang H, Zhang Y N. Sparse representation based iterative incremental image deblurring. In: Proceedings of the 16th IEEE International Conference on Image Processing (ICIP). Cairo, Egypt: IEEE, 2009. 1293-1296
    [10] Rudin L, Osher S, Fatemi E. Nonlinear total variation based noise removal algorithms. Physica D, 1992, 60(1-4): 259- 268
    [11] Kristian B, Karl K, Thomas P. Total generalized variation. SIAM Journal on Imaging Sciences, 2010, 3(3): 492-526
    [12] Knoll1 F, Bredies K, Pock T, Stollberger R. Second order total generalized variation (TGV) for MRI. Magnetic Resonance in Medicine, 2011, 65(2): 480-491
    [13] Yin W T, Osher S, Goldfarb D, Darbon J. Bregman iterative algorithms for l1-minimization with applications to compressed sensing. SIAM Journal on Imaging Sciences, 2008, 1(1): 143-168
    [14] Goldstein T, Osher S. The split Bregman method for L1-regularized problems. SIAM Journal on Imaging Sciences, 2009, 2(2): 323-343
    [15] Beck A, Teboulle M. A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM Journal on Imaging Sciences, 2009, 2(1): 183-202
    [16] Puig A T, Wiesel A, Fleury G, Hero A O. Multidimensional shrinkage-thresholding operator and group LASSO penalties. IEEE Signal Processing Letters, 2011, 18(6): 363-366
    [17] Oliveira J P, Bioucas-Dias J M, Figueiredo M A T. Adaptive total variation image deblurring: a majorization-minimization approach. Signal Processing, 2009, 89(9): 1683-1693
  • 加载中
计量
  • 文章访问数:  2591
  • HTML全文浏览量:  109
  • PDF下载量:  1595
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-07-01
  • 修回日期:  2015-01-30
  • 刊出日期:  2015-06-20

目录

    /

    返回文章
    返回