2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于神经网络的高阶随机非线性系统的状态反馈控制

闵惠芳 段纳

闵惠芳, 段纳. 基于神经网络的高阶随机非线性系统的状态反馈控制. 自动化学报, 2014, 40(12): 2968-2972. doi: 10.3724/SP.J.1004.2014.02968
引用本文: 闵惠芳, 段纳. 基于神经网络的高阶随机非线性系统的状态反馈控制. 自动化学报, 2014, 40(12): 2968-2972. doi: 10.3724/SP.J.1004.2014.02968
MIN Hui-Fang, DUAN Na. Nonlinear Control for Multi-agent Formations with Delays in Noisy Environments. ACTA AUTOMATICA SINICA, 2014, 40(12): 2968-2972. doi: 10.3724/SP.J.1004.2014.02968
Citation: MIN Hui-Fang, DUAN Na. Nonlinear Control for Multi-agent Formations with Delays in Noisy Environments. ACTA AUTOMATICA SINICA, 2014, 40(12): 2968-2972. doi: 10.3724/SP.J.1004.2014.02968

基于神经网络的高阶随机非线性系统的状态反馈控制

doi: 10.3724/SP.J.1004.2014.02968
基金项目: 

Supported by National Natural Science Foundation of China (61104222, 61305149), Natural Science Foundation of Jiangsu Province (BK2011205), 333 High-Level Talents Training Program in Jiangsu Province, Program for Fundamental Research of Natural Sciences in Universities of Jiangsu Province (11KJB510026), and Natural Science Foundation of Jiangsu Normal University (11XLR08)

Nonlinear Control for Multi-agent Formations with Delays in Noisy Environments

Funds: 

Supported by National Natural Science Foundation of China (61104222, 61305149), Natural Science Foundation of Jiangsu Province (BK2011205), 333 High-Level Talents Training Program in Jiangsu Province, Program for Fundamental Research of Natural Sciences in Universities of Jiangsu Province (11KJB510026), and Natural Science Foundation of Jiangsu Normal University (11XLR08)

  • 摘要: 基于神经网络(NN)研究了一类含有未知非线性项的高阶随机不确定系统的自适应状态反馈控制问题. 通过引入径向基函数神经网络(RBF NN) 逼近方法, 运用 backstepping 技术以及选择合适的 Lyapunov 函数, 我们构造了一个自适应状态反馈控制器使得闭环系统是半全局一致最终有界的. 仿真例子验证了设计方法的有效性.
  • [1] Sanner R M, Slotine J J. Gaussian networks for direct adaptive control. IEEE Transactions on Neural Networks, 1992, 3(6): 837-863
    [2] [2] Wang T, Tong S C, Li Y M. Adaptive neural network output feedback control of stochastic nonlinear systems with dynamical uncertainties. Neural Computing and Applications, 2013, 23(5): 1481-1494
    [3] [3] Hsu C F. Adaptive backstepping Elman-based neural control for unknown nonlinear systems. Neurocomputing, 2014, 136(16): 170-179
    [4] [4] Gao H T, Zhang T P, Xia X N. Adaptive neural control of stochastic nonlinear systems with unmodeled dynamics and time-varying state delays. Journal of the Franklin Institute, 2014, 351(6): 3182-3199
    [5] [5] Psillakis H E, Alexandridis A T. NN-based adaptive tracking control of uncertain nonlinear systems disturbed by unknown covariance noise. IEEE Transactions on Neural Networks, 2007, 18(6): 1830-1835
    [6] [6] Krstić M, Deng H. Stabilization of Nonlinear Uncertain Systems. New York: Springer-Verlag, 1998.
    [7] [7] Mao X R. Stochastic Differential Equations and Their Applications. Chichester: Horwood Publishing, 2007.
    [8] [8] Deng H, Krstić M. Output-feedback stochastic nonlinear stabilization. IEEE Transactions on Automatic Control, 1999, 44(2): 328-333
    [9] [9] Zhou Q, Shi P, Xu S Y, Li H Y. Observer-based adaptive neural network control for nonlinear stochastic systems with time-delay. IEEE Transactions on Neural Networks and Learning Systems, 2013, 24(1): 71-80
    [10] Lin W, Qian C J. Adding one power integrator: a tool for global stabilization of high-order lower triangular systems. Systems and Control Letters, 2000, 39(5): 339-351
    [11] Sun Z Y, Sun W, Liu Z G. Global adaptive stabilization of high-order nonlinear systems with zero dynamics. Acta Automatica Sinica, 2012, 38(6): 1025-1032
    [12] Xie X J, Tian J. State-feedback stabilization for high-order stochastic nonlinear systems with stochastic inverse dynamics. International Journal of Robust and Nonlinear Control, 2007, 17(14): 1343-1362
    [13] Xie X J, Liu L. A homogeneous domination approach to state feedback of stochastic high-order nonlinear systems with time-varying delay. IEEE Transactions on Automatic Control, 2013, 58(2): 494-499
    [14] Xie X J, Duan N. Output tracking of high-order stochastic nonlinear systems with application to benchmark mechanical system. IEEE Transactions on Automatic Control, 2010, 55(5): 1197-1202
  • 加载中
计量
  • 文章访问数:  1546
  • HTML全文浏览量:  167
  • PDF下载量:  999
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-09-05
  • 修回日期:  2014-06-10
  • 刊出日期:  2014-12-20

目录

    /

    返回文章
    返回