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Abstract This paper focuses on investigating the issue of
adaptive state-feedback control based on neural networks (NNs)
for a class of high-order stochastic uncertain systems with un-
known nonlinearities. By introducing the radial basis func-
tion neural network (RBFNN) approximation method, utiliz-
ing the backstepping method and choosing an approximate Lya-
punov function, we construct an adaptive state-feedback con-
troller which assures the closed-loop system to be mean square
semi-global-uniformly ultimately bounded (M-SGUUB). A sim-
ulation example is shown to illustrate the effectiveness of the
design scheme.
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It is well known that most practical systems are com-
plicated because of nonlinearity and the existence of un-
certainties. How to reasonably deal with these nonlin-
ear uncertainties is the major obstruction of the controller
design of uncertain systems. Several useful control de-
sign methodologies such as Lyapunov approach and typ-
ical input-output methods, especially adaptive backstep-
ping technique have obtained globally stable, output track-
ing results for various nonlinear systems with parameter-
ized uncertainties. Recently, neural networks (NNs) have
been frequently introduced to solve these uncertainties ow-
ing to their inherent approximation properties and have
made great progress[lfm.

While for stochastic nonlinear systems case, with the
help of the basic stochastic stability theory in [6—7] and
the study of control problems based on the backstepping
for stochastic systems in [8] and references therein, the
method of combining backstepping with NN approxima-
tion has been successfully developed to guarantee stability
for stochastic nonlinear systems[g]. However, the control
procedures that we mentioned above are all based on the
assumptions p; = 1 and d;(-) = 1 for the following system:

dz; = d;(t, z, u)mﬁ_ldt + fi ((Eb)dt + giT(aT:i)dw,
i=1,---,n—1 (1)
dz, = dn(t,z, w)uP dt + fo(x)dt + gr (z)dw

where u € R and £ = (z1,--- ,2,)" € R™ are the con-

Manuscript received September 5, 2013; accepted June 10, 2014

Supported by National Natural Science Foundation of China
(61104222, 61305149), Natural Science Foundation of Jiangsu
Province (BK2011205), 333 High-Level Talents Training Program in
Jiangsu Province, Program for Fundamental Research of Natural Sci-
ences in Universities of Jiangsu Province (11KJB510026), and Nat-
ural Science Foundation of Jiangsu Normal University (11XLRO0S8)

Recommended by Associate Editor LIU Yun-Gang

1. School of Electrical Engineering & Automation, Jiangsu Normal
University, Xuzhou 221116, China

trol input and the measurable state, respectively. For each
1<i<mn,Z denote (z1,---,x:)", pi > 1 are the odd inte-
gers. d;(t,z,u) is a continuous differential real-valued func-
tion of its variables, f;(-) represents the unknown smooth
function with f;(0) = 0, and g;(-) is a vector-valued un-
known smooth function with g;(0) = 0. When p; > 1,
system (1) is said to be high-order stochastic nonlinear sys-
tem if there exists at least one p; > 1 (1 < i < n), p; is
called high-order. w is an m-dimensional standard Wiener
process defined on a probability space {Q, F, P}, where Q
is a sample space, F is a o-field, and P is the probability
measure.

When p; > 1, motivated by the certain results in [10—11]
and the related papers, [12] firstly considered a class of
high-order nonlinear systems with stochastic inverse dy-
namic. In the succeeding work, the state-feedback control
problems and output-feedback control problems for more
general systems were further studied, respectively. How-
ever, all of the above achievements were obtained through
imposing strong restrictions on system nonlinearities. Then
in [13—14], the control problems were solved under weaker
restrictions.

Naturally, how to apply NN approximation method and
backstepping scheme to design the adaptive state-feedback
controller for high-order stochastic nonlinear systems with-
out restrictions on unknown nonlinearities?

In the paper, we will solve this problem by construct-
ing an adaptive neural network state-feedback controller
for system (1).

1 Mathematical preliminaries

Notations. R™ represents the set of all non-negative
real numbers, R" is the n-dimensional Euclidean space,
C? denotes the family of all the functions with continuous
second partial derivations. X T denotes its transpose, when
X is a given vector or matrix, tr{X } is the trace of X where
X is a square matrix, |X| is the Euclidean norm of vector
X, || X]| is the two-norm of square matrix X.

Lemma 1 (Young's inequality). For V(z,y) € R?,
zy < =|zP + - |y|? holds, where e > 0, p,q > 1, and

1,1 B o=t
lyl=g,

Lemma 204, For real variables £ > 0 and y > 0,

m —1\ym—1 .

z<y-+(5)"(",~)"" ", where m > 1 is a real number.

Lemma 3", If z and y are real variables, then for any
real numbers m,n,b > 0 and continuous function a(-) > 0,
m+n m

b [y

a(-)z™y" <bla|" " 4+ Sh () T a() e
Consider the stochastic system with the form:

m—+n m

dz = f(z)dt + g (x)dw (2)

where £ € R" is the system state, w is an m-dimensional
standard Wiener process defined as (1), f(-) € R - R
and g(-) € R™ — R™ are locally Lipschitz functions and
satisfy £(0) = 0, g(0) = 0. For any given V(z) € C?, ac-
cording to system (2), the differential operator £ is defined
as
2
v = YD @) 1 Lirlg@ T Egt@) )
Definition 1), The solution process {z(t),t > to} of
the nonlinear stochastic system (2) with initial condition
xo € So (the compact set with the origin in it) is called to
be mean square semi-global-uniformly ultimately bounded
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(M-SGUUB) if for any ideal escape risk ¢ (0 < ¢ < 1),
it is bounded with probability 1 — ¢ in some compact set
Se D So, ie., infzyes, P{rs. = oo} > 1 —e. The hitting
time s, is the first time the trajectory of the state variable
reaches the boundary of S..

Lemma 40!, For system (2), if there are a positive-
definite radially unbounded, twice continuously differential
Lyapunov function V : R® — R, constants a1 > 0, az > 0
and ro > Z—f such that for some 0 < e < 1 and zg € Sy :=

{z e R"|V(z) <o},

LV(z) < —a1V(x) +az, z€S.={xcR"|V(xr) <2}

holds, then for V¢ € [to,Ts.], 1) there is a unique solution
to system (2); 2) the nonlinear system is bounded with
probability 1 — ¢ in S. with initial condition ¢ € So, i.e.,
the solution to the system is M-SGUUB.

In the following, RBF NN will be used to estimate
the unknown nonlinear functions. For any continuous un-

known function f(z) over a compact set Sz C R?, there is
w*'s (z) so that for an ideal level of accuracy e,
*T
f®)=W" S(z)+ (), [0(z) <e (4)

where §(z) is the approximation error, the known function
vector is 8(x) = [s1(x), -, sn(x)]" with N > 1 being the
number of RBF NN nodes. Function s;(z), 1 < i < N
is chosen as the commonly utilized Gaussian function as

si(x) = exp [ M , where ¢ is the width of the

above Gaussian functlon, b, = [bi1,- - 7bm]T is the center
of the receptive field and W™ is the ideal constant weight
vector and given by W* = arg miny, cgn {Supgeg, [f(T) —
WTS(z)|}, where arg min is the value of variable W when
the objective function sup,cg_|f(x) — WTS(z)| is mini-

mum, W = [wi,--- ,wn]T is a weight vector.

2 Controller design

To obtain the control goal, we impose the following as-
sumption on system (1).

Assumption 1. For ¢ = 1,--- ,n, there are known real
numbers \;, p; > 0 such that 0 < X\; < d;(t,z,u) < py.

To simplify the design process, we define a constant p =
max;=1,... n{pi} and

gzmaX{Nij|W:j|27i:15"'7n7j:172} (5)

where N;; is the number of RBFNN nodes, and W7,
ideal constant weight vector.

Firstly, we introduce the following coordinate change:

is the

zZ1 = X1, zi:wi—ai(@,l,é), i:2,~~-,n (6)

where 0 is the estimation of 6, and a;(&;_1,0) is the virtual
control law to be designed later. .
Step 1. Using (1), (3) and (6) and choosing Vi(z1,0) =

k1 —pitd L 52 - 3
P—— 27 + 5507, it follows that

— 3
pp1+><

LVi = k2P P3(dy (8, 2, u)ah)! :

+ Fi(z1)) +

>

(7)

| ™

k1 Zf7p1 Jr2t1“{G1 (1‘1 )G;F (xl )} —

where I', k&1 > 0 are constants, 6 =6—0is the parameter
estimation error, F1(z1) = fi(z1) and G1(z1) = g1(z1).

By (4), for any given 0 < €11 < 1,0 < e12 < 1, there
exist Wi‘fsu(ml) and WI;Slz(ml) such that

Fi(z1) = W11 11(z1) + d11(z1)
G (21)G1(z1) = S12(x1) + 012(71)
611 (21)] < eu1, |512(l‘1)\ <en (8)

where 1 € Sz, = {z1|z1 € Sz} and S is a defined com-
pact set by which the state trajectories may pass. Accord-
ing to S1;51; < Ni; and (5), we have

T T
Wi I’I181,* < Wi, I°Ni; <0, j=1,2 9)

By Lemmas 1~2, tr{X} < n||X|e < nyn||X]| (X €
R™ ™ is a matrix), (8) and (9), there always exist positive
numbers £11, £12 and nonnegative smooth functions Wy, (63)7
@11(é), \Iflz(é) and <I>12(é) such that

klzf_pl+3F1 (CL’l) S

2P (6) + % PP1H+3G <

1 +zg’f+3q>11(é) + 2217 P1t3g (10)
I#klzf_pl+2tr{c¥1(.’El)GT(wl)} <

PEPLED oty (g) 4 PERLES pomag

1o + 2PT3®15(0) + w'zf*plwé (11)

4

\Illl(é) = k¥ + Vl;éZ + %sfl and func-

p+3+3 131+S
: ) p—p1+3 pP—p1 P P—pP1

tions @11(0) > (B850 ) (gt ) T
and Wip() = kin® + Y 4 1ed @) >

( X ) e e

p—p1+3)(p—p1+2 P—P1 p1+1 P—P1

< 2(p+3) ¥ (0)) (&12(p1—p1+2)) ’
Choosing the 1st virtual control law

where

1

A o <C1 + @11(é) + (1312(9)) -

az(ml,e) = k1)\1 (12)

using Assumption 1 and substituting (10) ~ (1
yield

2) into (7)

LV < —(312’1+ +k‘1d1(t x, ’LL) b= p1+3( Ty

fl*f(é*ﬁ) (13)

—ab')+

where ¢; > 0 is a positive constant, & = &11 + £12 and

= %szﬂlﬁrS + p*;l1+3rszp1+2.
Step (i=2--- n). At this step, the design procedure is

similar to step 1 and shown by the following proposition.

Proposition 1. For the ith Lyapunov function candi-

= A i kj p—p;+4 N2 .
date Vi(z:,0) = 37, pip;+4 S+ 567, there exists
the virtual control law «;41(Z;,0) with the form

1

i () = —z (cz- + @i (0) + i (0) + %(9)> o

ki
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such that By combining (20), it is easy to get
i—1
LV, < — PES 02 4 kadi(t, @, u) X
B ]Z:l( )% aw kit @) LV < —a1Vi + a2, Zes. (21)
0 :
2P p@+3(xl+1 —ai )+ & — f(G—'r,-) (15) o

where k;,c; > 0, y1,--- ,7i—1 are positive parameters, &; =
Cim1t+€n+Ei, and i = Ty + 4T 2P PO L PoRAS PRt
Proof. See Appendix. a
Hence at step n, choosing Lyapunov function
1

. k. . -
Via(z,0) =y — 4 pPitdy - 42 16
(2,0) ;P—Pﬁ‘“ + o7 (16)

and constructing the controller and adaptive law as

1

) ) 5\ Pr
knAn
0= S P(lzz)_er)’ + wzz_ﬂ—mw) _d (18)
=1 2" 4 !
yield
Vo< =Y (et b+ 200 (19)

where &, = Y1 (€1 +&i2), ¢

3 Controller analysis

—v; >0, v, =0and ¢, > 0.

Now we give the major result of the paper.

Theorem 1. For system (1) satisfying Assumption 1,
the control laws chosen as (12), (14), (17) and the adaptive
law é chosen as (18), when constants a1 and as satisfy
ro > 22 and are given by

Zﬁi%’l}’ az = & + %92 +amg  (20)
Bi > 0, the closed-loop system (1), (6), (12), (14), (17)
and (18) can be ensured to be M-SGUUB with probability
1—¢ein S = {E]V, < 20}, where E = (2,0)" is the
closed-loop state variable with the initial condition Z¢ =
(2(to),0(to))T, and ¢ is a positive constant.

Proof. Firstly, define the initial state compact set
So = {E|V. < ro} and the approximation region Sx, =

{(Xal 30 5o pi+4zf pitd < ™}, where e (0 < e < 1) is

a design parameter, and X,, = (.’E,é) When ro > Z—f, ac-
cording to the definitions of Sp and S, if 2 € S., then
X, € Sx,,. This means 7. < 7x,, where 7. is the first
time the trajectory of the new state Z reaches the bound-
ary of St and 7 is the first time the trajectory of the state
variable X, arrives at the boundary of Sx,,.

According to (19) and 60 < —%éz + 16, one has LV, <
> (e — 'yi)szr?’ + &0 — %7 where &, = &, + %92.
Using Lemma 2 and (16) one can find a positive constant
€n+1 such that Vi (2,0) < 327 Bi2P™ + € + L0%, where

i3
ks P=Pitd\ 5 ( Piml  \ 5o _
Bi = P*P:+4( erz )p ritd (§n+1(;*Pi+4))p pl+4 and £ =

n k;
2im1 ppirabnt

. (c
a1 = min

Since rg > o and 7. < 7x,,, it can be summarized from
Lemma 4 that the closed-loop system (1), (6), (12), (14),
(17) and (18) is ensured to be M-SGUUB . O

Remark 1. The analysis process in Theorem 1 is rig-
orous and reasonable. For a certain system, it has a finite
solution set. We firstly give a sufficiently large Sy~ which
contains the solution set and determines €, then all the
closed-loop signals are enabled to stay in the compact set
S= and converge to S. by regulating parameters c;, 3, i,
&i1, &2, En+1, ki and I appropriately. The relationships of
these compact sets are So C S: C Sz C Syn. Apparently,
a larger Sy n leads to a more relaxed Sp.

4 A simulation example

Consider a high-order stochastic nonlinear system:

{ dz1 = z2dt + f1(z1)dt + g1(z1)dw (22)

dzs = uddt + f2($1, .Iig)dt + 92(.131, $2)dw

Wheredl—dg—lpl—lpg—i% p—3 fi = a3 — 2z,
fo = z123, g1 = sin(z1) and g2 = 7 sin x.
The adaptive controller is designed as

(o) (561, é) = -2z Cl+¢11(§i+<1>12(é) 1 (23)
u(.’i‘z, é) = —2 (62+‘1>20(9)+<]I€>221(9)+‘1>22(9)) 3

1. 5 1 3 )

= (z1,22)", e1 > 0,

VASLL 611))6/5(1/(55 D)2,

where z1 = x1, 22 = 2 — az2(z1, )
co >0, @11(0) = (g(lﬁ +
®12(0) = (3(kin® + Y + 1)) ¥?(1/(2612))/? and

2 212
~ A A/ H2
Do) = F(E)Tk§N?, Pan(0) = (k5 + Y- +
3 2
3¢81)°, and 22 (0) = 55 (K3n® + Vit2 | ke

In simulation, k1 = 05 ko = 0.5, c1 = 3, c2 = 1.5,
11 — 0.1, €12 = 0.1, €21 = 0.1, E29 — 0.1, 611 = 5, 512 = 5,
€21 =5, 82 =5, n =2, 71 =2, and I' = 100. By choosing
the appropriate initial values as 6(0) = 0, z1(0) = —0.5
and z2(0) = 3, Fig. 1 verifies the effectiveness of the control
scheme.

5 Concluding remarks

The paper investigates the problem of state-feedback
control for a class of high-order stochastic uncertain non-
linear systems with the aid of neural network and the de-
signed controller guarantees the closed-loop system to be
M-SGUUB.
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Fig.1 The responses of closed-loop system (22) and (23)

There are still many problems to be solved: 1) When
di(t,z,u) is nonzero but of unknown control direction, how
to investigate the state-feedback controller? 2) How to de-
sign an adaptive state-feedback controller for system (1)
with time-delays based on neural network? 3) How to de-
sign an output-feedback controller for this class of systems
based on neural network?

Appendix

Proof of Proposition 1. We prove the proposition
by induction. Assume that at step ¢ — 1, there are a se-

. ~ 1
c1+P11(0)+P12(9) \ P1
k11

ries of control laws az(:) = —21 (
ai() = —zioami1(0) =

such that V;_i(-) =

ki—1Xi—1

szl k ZP—Pj+4
j=1 p—p;+4~J

1
Ci—1+¢i—1,0+‘bi—1‘1+q’i—1,2) Pi—1
b

+ % 62 satisfies

5 i 2P

LViy < — Z '_FYJ 1+kz 1X

zflfl-l*?’dz 1) (] = ol )+

i1 — % (é - 7'1'71)

We will verify that (A1) holds for the ith Lyapunov func-
tion. By (1), (6), (A1) and Ito rule, one has

(A1)

i—2
LV <= (e — )2 —cia 2l + ki x

Jj=1

die1(t, @, u)z (1’?1 f-af 1)+

(3

fi—l — %(é — Ti—l) + kizfimeB (di(t,m,u)x

z+1 + F (xla 9)) + %kizﬁj_mﬂx

tr{Gi(z:,0)G} (:,0)}
T 0y 0T+ 18) -
- ’Z],l 1 azjazzgy j (@)g1(@), and Gi = gi(xi) —
Z; i gilgy(%)

(A2)

where F; = f;(Z;)

8041

In terms of RBF NN approximation (4), for any given
0 < e <1, and 0 < €2 < 1, there exist RBF NN

Wffsil(fﬁu 0), Wi Sio(%;,0) such that

Fi#:,0) = W 81 (&:,0) + 60 (21, 0)
G (Z4, ) (Z é) ng Si2(Zs, )+(512(a:1,0)
|0:1(2:,0)| < ein, |0:2(Zi,0)| < ein (A3)

where (iz,é)T € S5&:,0) = {(Z:,0)7(Z:,0)" € Sz}
According to §7;8:; < Ni; and (5) one can get

Wi ISl < W3 PN <0, =12 (AY)
By Lemmas 1~3, (A3), (A4), tr{X} < n||X|
ny/n||X|| and (a4 b)" = Y Cra""'b’, there must ex-
ist positive real numbers vi—1,7vi—1,,;(j = 0, ,(pi—1 —
1)/2),&i1,&2 and nonnegative functions @io(é) ‘1111(9)
‘I‘ﬂ(é), \I’Zg(é) and @12(9) such that

k‘i71d¢71(t T u) f_lz)i_1+3($z-71_l — Ocl-)i_l) <

7 K3 —

Vi1 201 + @0 (0) 20 (A5)
kizl P (2:,6) <
511+Zp+3¢’ ( ) P P1+39 (AG)
P p’“tr{G (2:.0)G! (@:,0)) <
Lz + Zf+3q>i2(é) + pi_ii + 3Zf_p"'+29 (A7)
where Yi—1 = Z(m 1=/ Yi—1,55 q%‘o(é) >
(m 1-1)/2 pi—1-25 ;, (P+3)vi—1,45 *% k
Z p+3 (P*Pi—1+3+2j) ' ( i—1fbi—1-

V1462 1.2
2 + 551'17

2 15 LSQ N )
Cpf 1\/@)“71_ Jv \1111(9) = k% +

~ . A P+3 _
®a(0) = (T Ya0)T T (g

(p=pi+3)( 1+2> P i1
(PP P (0)) 7 (o
Choosing the ith virtual control law as (14), using As-
sumption 1 and substituting (A5) ~ (A7) into (A2), one has
(15). This completes the proof. O

pi
)pfm,+37

pi+1
)p—pi+2 .
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