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Neural Network-based Adaptive

State-feedback Control for

High-order Stochastic Nonlinear

Systems

MIN Hui-Fang1 DUAN Na1

Abstract This paper focuses on investigating the issue of
adaptive state-feedback control based on neural networks (NNs)
for a class of high-order stochastic uncertain systems with un-
known nonlinearities. By introducing the radial basis func-
tion neural network (RBFNN) approximation method, utiliz-
ing the backstepping method and choosing an approximate Lya-
punov function, we construct an adaptive state-feedback con-
troller which assures the closed-loop system to be mean square
semi-global-uniformly ultimately bounded (M-SGUUB). A sim-
ulation example is shown to illustrate the effectiveness of the
design scheme.
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It is well known that most practical systems are com-
plicated because of nonlinearity and the existence of un-
certainties. How to reasonably deal with these nonlin-
ear uncertainties is the major obstruction of the controller
design of uncertain systems. Several useful control de-
sign methodologies such as Lyapunov approach and typ-
ical input-output methods, especially adaptive backstep-
ping technique have obtained globally stable, output track-
ing results for various nonlinear systems with parameter-
ized uncertainties. Recently, neural networks (NNs) have
been frequently introduced to solve these uncertainties ow-
ing to their inherent approximation properties and have
made great progress[1−5].

While for stochastic nonlinear systems case, with the
help of the basic stochastic stability theory in [6−7] and
the study of control problems based on the backstepping
for stochastic systems in [8] and references therein, the
method of combining backstepping with NN approxima-
tion has been successfully developed to guarantee stability
for stochastic nonlinear systems[9]. However, the control
procedures that we mentioned above are all based on the
assumptions pi = 1 and di(·) = 1 for the following system:




dxi = di(t,xxx, u)xpi
i+1dt + fi(x̄xxi)dt + gggT

i (x̄xxi)dωωω,
i = 1, · · · , n− 1

dxn = dn(t,xxx, u)upndt + fn(xxx)dt + gggT
n (xxx)dωωω

(1)

where u ∈ R and xxx = (x1, · · · , xn)T ∈ Rn are the con-
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trol input and the measurable state, respectively. For each
1 ≤ i ≤ n, x̄xxi denote (x1, · · · , xi)

T, pi ≥ 1 are the odd inte-
gers. di(t,xxx, u) is a continuous differential real-valued func-
tion of its variables, fi(·) represents the unknown smooth
function with fi(000) = 000, and gggi(·) is a vector-valued un-
known smooth function with gggi(000) = 000. When pi ≥ 1,
system (1) is said to be high-order stochastic nonlinear sys-
tem if there exists at least one pi > 1 (1 ≤ i ≤ n), pi is
called high-order. ωωω is an m-dimensional standard Wiener
process defined on a probability space {Ω,F , P}, where Ω
is a sample space, F is a σ-field, and P is the probability
measure.

When pi > 1, motivated by the certain results in [10−11]
and the related papers, [12] firstly considered a class of
high-order nonlinear systems with stochastic inverse dy-
namic. In the succeeding work, the state-feedback control
problems and output-feedback control problems for more
general systems were further studied, respectively. How-
ever, all of the above achievements were obtained through
imposing strong restrictions on system nonlinearities. Then
in [13−14], the control problems were solved under weaker
restrictions.

Naturally, how to apply NN approximation method and
backstepping scheme to design the adaptive state-feedback
controller for high-order stochastic nonlinear systems with-
out restrictions on unknown nonlinearities?

In the paper, we will solve this problem by construct-
ing an adaptive neural network state-feedback controller
for system (1).

1 Mathematical preliminaries
Notations. R+ represents the set of all non-negative

real numbers, Rn is the n-dimensional Euclidean space,
C2 denotes the family of all the functions with continuous
second partial derivations. XXXT denotes its transpose, when
XXX is a given vector or matrix, tr{XXX} is the trace of XXX where
XXX is a square matrix, |XXX| is the Euclidean norm of vector
XXX, ‖XXX‖ is the two-norm of square matrix XXX.

Lemma 1 (Young′s inequality). For ∀(x, y) ∈ R2,

xy ≤ εp

p
|x|p + 1

qεq |y|q holds, where ε > 0, p, q > 1, and
1
p

+ 1
q

= 1.

Lemma 2[14]. For real variables xxx ≥ 0 and yyy > 0,
xxx ≤ yyy + ( xxx

m
)m(m−1

yyy
)m−1, where m ≥ 1 is a real number.

Lemma 3[14]. If xxx and yyy are real variables, then for any
real numbers m, n, b > 0 and continuous function a(·) ≥ 0,

a(·)xxxmyyyn ≤ b|xxx|m+n + n
m+n

(m+n
m

)−
m
n a(·) m+n

n b−
m
n |yyy|m+n.

Consider the stochastic system with the form:

dxxx = fff(xxx)dt + gggT(xxx)dωωω (2)

where xxx ∈ Rn is the system state, ωωω is an m-dimensional
standard Wiener process defined as (1), fff(·) ∈ Rn → R
and ggg(·) ∈ Rn → Rm are locally Lipschitz functions and
satisfy fff(000) = 000, ggg(000) = 000. For any given V (xxx) ∈ C2, ac-
cording to system (2), the differential operator L is defined
as

LV (xxx) =
∂V (xxx)

∂xxx
fff(xxx) +

1

2
tr

{
ggg(xxx)

∂2V (xxx)

∂xxx2
gggT(xxx)

}
(3)

Definition 1[5]. The solution process {x(t), t ≥ t0} of
the nonlinear stochastic system (2) with initial condition
x0 ∈ S0 (the compact set with the origin in it) is called to
be mean square semi-global-uniformly ultimately bounded
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(M-SGUUB) if for any ideal escape risk ε (0 < ε < 1),
it is bounded with probability 1 − ε in some compact set
Sε ⊃ S0, i.e., infx0∈S0 P{τSε = ∞} ≥ 1− ε. The hitting
time τSε is the first time the trajectory of the state variable
reaches the boundary of Sε.

Lemma 4[5]. For system (2), if there are a positive-
definite radially unbounded, twice continuously differential
Lyapunov function V : Rn → R, constants a1 > 0, a2 > 0
and r0 > a2

a1
such that for some 0 < ε < 1 and x0 ∈ S0 :=

{xxx ∈ Rn|V (xxx) ≤ r0},
LV (xxx) ≤ −a1V (xxx) + a2, xxx ∈ Sε = {xxx ∈ Rn|V (xxx) ≤ r0

ε
}

holds, then for ∀ t ∈ [t0, τSε ], 1) there is a unique solution
to system (2); 2) the nonlinear system is bounded with
probability 1 − ε in Sε with initial condition x0 ∈ S0, i.e.,
the solution to the system is M-SGUUB.

In the following, RBF NN will be used to estimate
the unknown nonlinear functions. For any continuous un-
known function f(xxx) over a compact set Sxxx ⊂ Rq, there is

WWW ∗TSSS(xxx) so that for an ideal level of accuracy ε,

f(xxx) = WWW ∗TSSS(xxx) + δ(xxx), |δ(xxx)| ≤ ε (4)

where δ(xxx) is the approximation error, the known function
vector is SSS(xxx) = [s1(xxx), · · · , sN (xxx)]T with N > 1 being the
number of RBF NN nodes. Function si(xxx), 1 ≤ i ≤ N
is chosen as the commonly utilized Gaussian function as

si(xxx) = exp
[
− (xxx−bbbi)

T(xxx−bbbi)

ς2

]
, where ς is the width of the

above Gaussian function, bbbi = [bi1, · · · , bin]T is the center
of the receptive field and WWW ∗ is the ideal constant weight
vector and given by WWW ∗ = arg minWWW∈RN {supxxx∈SSSxxx

|f(xxx) −
WWWTSSS(xxx)|}, where arg min is the value of variable W when
the objective function supxxx∈SSSxxx

|f(xxx) − WWWTSSS(xxx)| is mini-

mum, WWW = [w1, · · · , wN ]T is a weight vector.

2 Controller design
To obtain the control goal, we impose the following as-

sumption on system (1).
Assumption 1. For i = 1, · · · , n, there are known real

numbers λi, µi > 0 such that 0 < λi ≤ di(t,xxx, u) ≤ µi.
To simplify the design process, we define a constant p =

maxi=1,··· ,n{pi} and

θ = max{Nij |WWW ∗
ij |2, i = 1, · · · , n, j = 1, 2} (5)

where Nij is the number of RBFNN nodes, and WWW ∗
ij is the

ideal constant weight vector.
Firstly, we introduce the following coordinate change:

z1 = x1, zi = xi − αi(x̄xxi−1, θ̂), i = 2, · · · , n (6)

where θ̂ is the estimation of θ, and αi(x̄xxi−1, θ̂) is the virtual
control law to be designed later.

Step 1. Using (1), (3) and (6) and choosing V1(z1, θ̂) =
k1

p−p1+4
zp−p1+4
1 + 1

2Γ
θ̃2, it follows that

LV1 = k1z
p−p1+3
1 (d1(t,xxx, u)xp1

2 + F1(x1)) +
p− p1 + 3

2
×

k1z
p−p1+2
1 tr{GGG1(x1)GGG

T
1 (x1)} − θ̃

Γ
˙̂
θ (7)

where Γ, k1 > 0 are constants, θ̃ = θ − θ̂ is the parameter
estimation error, F1(x1) = f1(x1) and GGG1(x1) = ggg1(x1).

By (4), for any given 0 < ε11 < 1, 0 < ε12 < 1, there

exist WWW ∗T
11 SSS11(x1) and WWW ∗T

12 SSS12(x1) such that

F1(x1) = WWW ∗T
11 SSS11(x1) + δ11(x1)

GGGT
1 (x1)GGG1(x1) = WWW ∗T

12 SSS12(x1) + δ12(x1)

|δ11(x1)| ≤ ε11, |δ12(x1)| ≤ ε12 (8)

where x1 ∈ Sx1 = {x1|x1 ∈ Sxxx} and Sxxx is a defined com-
pact set by which the state trajectories may pass. Accord-
ing to SSST

1jSSS1j ≤ N1j and (5), we have

|WWW ∗T
1j |2|SSS1j |2 ≤ |WWW ∗T

1j |2N1j ≤ θ, j = 1, 2 (9)

By Lemmas 1∼ 2, tr{XXX} ≤ n‖XXX‖∞ ≤ n
√

n‖XXX‖ (XXX ∈
Rn×n is a matrix), (8) and (9), there always exist positive

numbers ξ11, ξ12 and nonnegative smooth functions Ψ11(θ̂),

Φ11(θ̂), Ψ12(θ̂) and Φ12(θ̂) such that

k1z
p−p1+3
1 F1(x1) ≤

zp−p1+3
1 Ψ11(θ̂) +

1

2
zp−p1+3
1 θ̃ ≤

ξ11 + zp+3
1 Φ11(θ̂) +

1

2
zp−p1+3
1 θ̃ (10)

p− p1 + 3

2
k1z

p−p1+2
1 tr{GGG1(x1)GGG

T
1 (x1)} ≤

p− p1 + 3

2
zp−p1+2
1 Ψ12(θ̂) +

p− p1 + 3

4
zp−p1+2
1 θ̃ ≤

ξ12 + zp+3
1 Φ12(θ̂) +

p− p1 + 3

4
zp−p1+2
1 θ̃ (11)

where Ψ11(θ̂) = k2
1 +

√
1+θ̂2

2
+ 1

2
ε2
11 and func-

tions Φ11(θ̂) ≥
(

p−p1+3
p+3

Ψ11

) p+3
p−p1+3

(
p1

ξ11(p−p1+3)

) p1
p−p1+3

,

and Ψ12(θ̂) = k2
1n3 +

√
1+θ̂2

2
+ 1

2
ε2
12, Φ12(θ̂) ≥

(
(p−p1+3)(p−p1+2)

2(p+3)
Ψ12(θ̂)

) p+3
p−p1+2

(
p1+1

ξ12(p−p1+2)

) p1+1
p−p1+2

.

Choosing the 1st virtual control law

α2(x1, θ̂) = −z1

(
c1 + Φ11(θ̂) + Φ12(θ̂)

k1λ1

) 1
p1

(12)

using Assumption 1 and substituting (10)∼ (12) into (7)
yield

LV1 ≤ −c1z
p+3
1 + k1d1(t,xxx, u)zp−p1+3

1 (xp1
2 − αp1

2 )+

ξ1 − θ̃

Γ
(
˙̂
θ − τ1) (13)

where c1 > 0 is a positive constant, ξ1 = ξ11 + ξ12 and
τ1 = 1

2
Γzp−p1+3

1 + p−p1+3
4

Γzp−p1+2
1 .

Step (((iii===222 · · ·· · ·· · · nnn))) ... At this step, the design procedure is
similar to step 1 and shown by the following proposition.

Proposition 1. For the ith Lyapunov function candi-

date Vi(z̄zzi, θ̂) =
∑i

j=1

kj

p−pj+4
z

p−pj+4

j + 1
2Γ

θ̃2, there exists

the virtual control law αi+1(x̄xxi, θ̂) with the form

αi+1(·) = −zi

(
ci + Φi0(θ̂) + Φi1(θ̂) + Φi2(θ̂)

kiλi

) 1
pi

(14)
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such that

LVi ≤ −
i−1∑
j=1

(cj − γj)z
p+3
j − ciz

p+3
i + kidi(t,xxx, u)×

zp−pi+3
i (xpi

i+1 − αpi
i+1) + ξi − θ̃

Γ
(
˙̂
θ − τi) (15)

where ki, ci > 0, γ1, · · · , γi−1 are positive parameters, ξi =
ξi−1+ξi1+ξi2, and τi = τi−1+

1
2
Γzp−pi+3

i + p−pi+3
4

Γzp−pi+2
i .

Proof. See Appendix. ¤
Hence at step n, choosing Lyapunov function

Vn(zzz, θ̂) =

n∑
i=1

ki

p− pi + 4
zp−pi+4

i +
1

2Γ
θ̃2 (16)

and constructing the controller and adaptive law as

u =− zn

(
cn + Φn0(θ̂) + Φn1(θ̂) + Φn2(θ̂)

knλn

) 1
pn

(17)

˙̂
θ =

n∑
i=1

Γ
(1

2
zp−pi+3

i +
p− pi + 3

4
zp−pi+2

i

)
− θ̂ (18)

yield

LVn ≤ −
n∑

i=1

(ci − γi)z
p+3
i + ξn +

1

Γ
θ̃θ̂ (19)

where ξn =
∑n

i=1(ξi1 +ξi2), ci−γi > 0, γn = 0 and cn > 0.

3 Controller analysis

Now we give the major result of the paper.
Theorem 1. For system (1) satisfying Assumption 1,

the control laws chosen as (12), (14), (17) and the adaptive

law θ̂ chosen as (18), when constants a1 and a2 satisfy
r0 > a2

a1
and are given by

a1 = min
{ ci − γi

βi
, 1

}
, a2 = ξn +

1

2Γ
θ2 + a1ξ (20)

βi > 0, the closed-loop system (1), (6), (12), (14), (17)
and (18) can be ensured to be M-SGUUB with probability

1 − ε in Sε = {ΞΞΞ|Vn ≤ r0
ε
}, where ΞΞΞ = (zzz, θ̃)T is the

closed-loop state variable with the initial condition ΞΞΞ0 =
(zzz(t0), θ̃(t0))

T, and ε is a positive constant.
Proof. Firstly, define the initial state compact set

S0 = {ΞΞΞ|Vn ≤ r0} and the approximation region SXXXn =

{XXXn|
∑n

i=1
ki

p−pi+4
zp−pi+4

i ≤ r0
ε
}, where ε (0 < ε < 1) is

a design parameter, and XXXn = (xxx, θ̂). When r0 > a2
a1

, ac-

cording to the definitions of S0 and Sε, if ΞΞΞ ∈ Sε, then
XXXn ∈ SXXXn . This means τε ≤ τXXXn , where τε is the first
time the trajectory of the new state ΞΞΞ reaches the bound-
ary of Sε and τxxx is the first time the trajectory of the state
variable XXXn arrives at the boundary of SXXXn .

According to (19) and θ̃θ̂ ≤ − 1
2
θ̃2 + 1

2
θ2, one has LVn ≤

−∑n
i=1(ci − γi)z

p+3
i + ξ̄n − θ̃2

2Γ
, where ξ̄n = ξn + 1

2Γ
θ2.

Using Lemma 2 and (16), one can find a positive constant

ξn+1 such that Vn(zzz, θ̂) ≤ ∑n
i=1 βiz

p+3
i + ξ + 1

2Γ
θ̃2, where

βi = ki
p−pi+4

(
p−pi+4

p+3

) p+3
p−pi+4

(
pi−1

ξn+1(p−pi+4)

) pi−1
p−pi+4 and ξ =

∑n
i=1

ki
p−pi+4

ξn+1.

By combining (20), it is easy to get

LVn ≤ −a1Vn + a2, ΞΞΞ ∈ Sε (21)

Since r0 > a2
a1

and τε ≤ τXXXn , it can be summarized from

Lemma 4 that the closed-loop system (1), (6), (12), (14),
(17) and (18) is ensured to be M-SGUUB . ¤

Remark 1. The analysis process in Theorem 1 is rig-
orous and reasonable. For a certain system, it has a finite
solution set. We firstly give a sufficiently large SNN which
contains the solution set and determines θ, then all the
closed-loop signals are enabled to stay in the compact set
SΞΞΞ and converge to Sε by regulating parameters ci, βi, γi,
ξi1, ξi2, ξn+1, ki and Γ appropriately. The relationships of
these compact sets are S0 ⊆ Sε ⊆ SΞΞΞ ⊆ SNN . Apparently,
a larger SNN leads to a more relaxed S0.

4 A simulation example

Consider a high-order stochastic nonlinear system:

{
dx1 = x2dt + f1(x1)dt + ggg1(x1)dωωω
dx2 = u3dt + f2(x1, x2)dt + ggg2(x1, x2)dωωω

(22)

where d1 = d2 = 1, p1 = 1, p2 = 3, p = 3, f1 = x2
1 − 2x1,

f2 = x1x
2
2, ggg1 = sin(x1) and ggg2 = x2

1 sin x2.
The adaptive controller is designed as





α2(x1, θ̂) = −z1
c1+Φ11(θ̂)+Φ12(θ̂)

k1

u(x̄xx2, θ̂) = −z2

(
c2+Φ20(θ̂)+Φ21(θ̂)+Φ22(θ̂)

k2

) 1
3

(23)

˙̂
θ =

1

2
Γz5

1 +
5

4
Γz4

1 +
1

2
Γz3

2 +
3

4
Γz2

2 − θ̂

where z1 = x1, z2 = x2 − α2(x1, θ̂), x̄xx2 = (x1, x2)
T, c1 > 0,

c2 > 0, Φ11(θ̂) =
(

5
6
(k2

1 +

√
1+θ̂2

2
+ 1

2
ε2
11)

)6/5
(1/(5ξ11))

1/5,

Φ12(θ̂) =
(

5
3
(k2

1n3 +

√
1+θ̂2

2
+ 1

2
ε2
12)

)3/2
(1/(2ξ12))

1/2 and

Φ20(θ̂) = 1
6
( 6
5
)−5k6

1γ−5
1 , Φ21(θ̂) = 1

4ξ21

(
k2
2 +

√
1+θ̂2

2
+

1
2
ε2
21

)2
, and Φ22(θ̂) = 1

2ξ2
22

(
k2
2n3 +

√
1+θ̂2

2
+

ε2
22
2

)3
.

In simulation, k1 = 0.5, k2 = 0.5, c1 = 3, c2 = 1.5,
ε11 = 0.1, ε12 = 0.1, ε21 = 0.1, ε22 = 0.1, ξ11 = 5, ξ12 = 5,
ξ21 = 5, ξ22 = 5, n = 2, γ1 = 2, and Γ = 100. By choosing
the appropriate initial values as θ̂(0) = 0, x1(0) = −0.5
and x2(0) = 3, Fig. 1 verifies the effectiveness of the control
scheme.

5 Concluding remarks

The paper investigates the problem of state-feedback
control for a class of high-order stochastic uncertain non-
linear systems with the aid of neural network and the de-
signed controller guarantees the closed-loop system to be
M-SGUUB.
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Fig. 1 The responses of closed-loop system (22) and (23)

There are still many problems to be solved: 1) When
di(t,xxx, u) is nonzero but of unknown control direction, how
to investigate the state-feedback controller? 2) How to de-
sign an adaptive state-feedback controller for system (1)
with time-delays based on neural network? 3) How to de-
sign an output-feedback controller for this class of systems
based on neural network?

Appendix
Proof of Proposition 1. We prove the proposition

by induction. Assume that at step i − 1, there are a se-

ries of control laws α2(·) = −z1

(
c1+Φ11(θ̂)+Φ12(θ̂)

k1λ1

) 1
p1 , · · · ,

αi(·) = −zi−1ηi−1(θ̂) =
(

ci−1+Φi−1,0+Φi−1,1+Φi−1,2
ki−1λi−1

) 1
pi−1 ,

such that Vi−1(·) =
∑i−1

j=1

kj

p−pj+4
z

p−pj+4

j + 1
2Γ

θ̃2 satisfies

LVi−1 ≤ −
i−2∑
j=1

(cj − γj)z
p+3
j − ci−1z

p+3
i−1 + ki−1×

z
p−pi−1+3

i−1 di−1(t,xxx, u)(x
pi−1
i − α

pi−1
i )+

ξi−1 − θ̃

Γ

(
˙̂
θ − τi−1

)
(A1)

We will verify that (A1) holds for the ith Lyapunov func-
tion. By (1), (6), (A1) and Itô rule, one has

LVi ≤ −
i−2∑
j=1

(cj − γj)z
p+3
j − ci−1z

p+3
i−1 + ki−1×

di−1(t,xxx, u)z
p−pi−1+3

i−1

(
x

pi−1
i − α

pi−1
i

)
+

ξi−1 − θ̃

Γ
(
˙̂
θ − τi−1) + kiz

p−pi+3
i

(
di(t,xxx, u)×

xpi
i+1 + Fi(x̄xxi, θ̂)

)
+

p− pi + 3

2
kiz

p−pi+2
i ×

tr{GGGi(x̄xxi, θ̂)GGG
T
i (x̄xxi, θ̂)} (A2)

where Fi = fi(x̄xxi) −
∑i−1

j=1
∂αi
∂xj

(dj(t,xxx, u)x
pj

j+1 + fj(x̄xxj)) −
∂αi

∂θ̂

˙̂
θ − 1

2

∑i−1
j,l=1

∂2αi
∂xj∂xl

gggT
j (x̄xxj)gggl(x̄xxl), and GGGi = gggi(x̄xxi) −∑i−1

j=1
∂αi
∂xj

gggj(x̄xxj).

In terms of RBF NN approximation (4), for any given
0 < εi1 < 1, and 0 < εi2 < 1, there exist RBF NN

WWW ∗T
i1 SSSi1(x̄xxi, θ̂),WWW

∗T
i2 SSSi2(x̄xxi, θ̂) such that

Fi(x̄xxi,
ˆ̂
θ) = WWW ∗T

i1 SSSi1(x̄xxi, θ̂) + δi1(x̄xxi, θ̂)

GGGT
i (x̄xxi, θ̂)GGGi(x̄xxi, θ̂) = WWW ∗T

i2 SSSi2(x̄xxi, θ̂) + δi2(x̄xxi, θ̂)

|δi1(x̄xxi, θ̂)| ≤ εi1, |δi2(x̄xxi, θ̂)| ≤ εi2 (A3)

where (x̄xxi, θ̂)
T ∈ S(x̄xxi, θ̂)

T
= {(x̄xxi, θ̂)

T|(x̄xxi, θ̂)
T ∈ Sxxx}.

According to SSST
ijSSSij ≤ Nij and (5), one can get

|WWW ∗T
ij |2|SSSij |2 ≤ |WWW ∗T

ij |2Nij ≤ θ, j = 1, 2 (A4)

By Lemmas 1∼ 3, (A3), (A4), tr{XXX} ≤ n‖XXX‖∞ ≤
n
√

n‖XXX‖ and (a + b)n =
∑n

i=0 Ci
nan−ibi, there must ex-

ist positive real numbers γi−1, γi−1,j(j = 0, · · · , (pi−1 −
1)/2), ξi1, ξi2 and nonnegative functions Φi0(θ̂), Ψi1(θ̂),

Φi1(θ̂), Ψi2(θ̂) and Φi2(θ̂) such that

ki−1di−1(t,xxx, u)z
p−pi−1+3

i−1 (x
pi−1
i − α

pi−1
i ) ≤

γi−1z
p+3
i−1 + Φi0(θ̂)z

p+3
i (A5)

kiz
p−pi+3
i Fi(x̄xxi, θ̂) ≤

ξi1 + zp+3
i Φi1(θ̂) +

1

2
zp−pi+3

i θ̃ (A6)

p− pi + 3

2
kiz

p−pi+2
i tr{GGGi(x̄i, θ̂)GGG

T
i (x̄xxi, θ̂)} ≤

ξi2 + zp+3
i Φi2(θ̂) +

p− pi + 3

4
zp−pi+2

i θ̃ (A7)

where γi−1 =
∑(pi−1−1)/2

j=0 γi−1,j , Φi0(θ̂) ≥
∑(pi−1−1)/2

j=0
pi−1−2j

p+3
(

(p+3)γi−1,j

p−pi−1+3+2j
)
− p−pi−1+3+2j

pi−1−2j (ki−1µi−1 ·
C2j

pi−1

√
1 + η4j

i−1)
p+3

pi−1−2j , Ψi1(θ̂) = k2
i +

√
1+θ̂2

2
+ 1

2
ε2

i1,

Φi1(θ̂) ≥ ( p−pi+3
p+3

Ψi1(θ̂))
p+3

p−pi+3 ( pi
ξi1(p−pi+3)

)
pi

p−pi+3 ,

Ψi2(θ̂) = k2
i n3 +

√
1+θ̂2

2
+ 1

2
ε2

i2 and Φi2(θ̂) ≥
( (p−pi+3)(p−pi+2)

2(p+3)
Ψi2(θ̂))

p+3
p−pi+2 ( pi+1

ξi2(p−pi+2)
)

pi+1
p−pi+2 .

Choosing the ith virtual control law as (14), using As-
sumption 1 and substituting (A5)∼ (A7) into (A2), one has
(15). This completes the proof. ¤
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