2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

含有平面结构场景的捆绑调整

谢远帆 吴毅红 范力欣

谢远帆, 吴毅红, 范力欣. 含有平面结构场景的捆绑调整. 自动化学报, 2014, 40(8): 1601-1611. doi: 10.3724/SP.J.1004.2014.01601
引用本文: 谢远帆, 吴毅红, 范力欣. 含有平面结构场景的捆绑调整. 自动化学报, 2014, 40(8): 1601-1611. doi: 10.3724/SP.J.1004.2014.01601
XIE Yuan-Fan, WU Yi-Hong, FAN Li-Xin. Bundle Adjustment for Scenes Containing Planes. ACTA AUTOMATICA SINICA, 2014, 40(8): 1601-1611. doi: 10.3724/SP.J.1004.2014.01601
Citation: XIE Yuan-Fan, WU Yi-Hong, FAN Li-Xin. Bundle Adjustment for Scenes Containing Planes. ACTA AUTOMATICA SINICA, 2014, 40(8): 1601-1611. doi: 10.3724/SP.J.1004.2014.01601

含有平面结构场景的捆绑调整

doi: 10.3724/SP.J.1004.2014.01601
基金项目: 

国家重点基础研究发展计划(973计划)(2012CB316302),国家自然科学基金(61070107)资助

详细信息
    作者简介:

    吴毅红 中国科学院自动化研究所研究员. 2001 年获中国科学院系统所理学博士学位. 主要研究方向为摄像机标定,摄像机定位,三维重建.E-mail:yhwu@nlpr.ia.ac.cn

    通讯作者:

    谢远帆 中国科学院自动化研究所博士研究生. 2007 年获中南大学信息科学与工程学院自动化专业学士学位. 主要研究方向为基于视觉的同步定位与地图创建.E-mail:yfxie@nlpr.ia.ac.cn

Bundle Adjustment for Scenes Containing Planes

Funds: 

Supported by National Basic Research Program of China (973 Program) (2012CB316302), and National Natural Science Foundation of China (61070107)

  • 摘要: 捆绑调整是计算机视觉中三维结构恢复过程的重要步骤. 捆绑调整通常将空间中点与点坐标的调整视为相互独立的过程,但是在包含有自然物和人工物的场景中,由于存在多余的自由度,这种调整方法会导致优化结果偏离真值. 提出了一种带有共面约束和平面夹角约束的捆绑调整,用于优化带有平面的场景. 借助新的参数化方法,共面约束和夹角约束可以方便地进行表示,并且带有这两类约束的捆绑调整求解过程,仍然是一个无约束的非线性最小二乘问题. 实验结果表明,这种带有先验信息的捆绑调整提供了对结构的更准确估计. 由于先验信息的加入,增强型法方程的维度变高,借助了稀疏的求解技术和预条件子方法,大大降低了求解时间. 最后,为了在实际应用中能够自动寻找出夹角约束,提出了一种基于最大完全图的贪心方法,该方法尽可能多地保留了夹角约束.
  • [1] Lhuillier M. Fusion of GPS and structure-from-motion using constrained bundle adjustments. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Colorado Springs, USA: IEEE, 2011. 3025-3032
    [2] [2] Wong K H, Chang M M Y. 3D model reconstruction by constrained bundle adjustment. In: Proceedings of the 17th International Conference on Pattern Recognition. Cambridge, UK: IEEE, 2004, 3: 902-905
    [3] [3] Di K, Xu F, Li R. Constrained bundle adjustment of panoramic stereo images for Mars landing site mapping. In: Proceedings of the 4th International Symposium on Mobile Mapping Technology. Kunming, China: MMT, 2004. 29-31
    [4] [4] Brlin N, Grussenmeyer P, Eriksson J, Lindstrom P. Pros and cons of constrained and unconstrained formulation of the bundle adjustment problem. In: International Archives of ISPRS, 2004, XXXV(B3): 589-594
    [5] [5] Zhou Z H, Jin H L, Ma Y. Robust plane-based structure from motion. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Rhode Island, USA: IEEE, 2012. 1482-1489
    [6] [6] Shan Y, Liu Z C, Zhang Z Y. Model-based bundle adjustment with application to face modeling. In: Proceedings of the 8th IEEE International Conference on Computer Vision. Vancouver, Canada: IEEE, 2001, 2: 644-651
    [7] [7] Fua P. Regularized bundle-adjustment to model heads from image sequences without calibration data. International Journal of Computer Vision, 2000, 38(2): 153-171
    [8] [8] Szeliski R, Torr P H S. Geometrically constrained structure from motion: points on planes. Lecture Notes in Computer Science, 1998, 1506: 171-186
    [9] [9] Bartoli A, Sturm P. Constrained structure and motion from multiple uncalibrated views of a piecewise planar scene. International Journal of Computer Vision, 2003, 52(1): 45-64
    [10] Gerke M. Using horizontal and vertical building structure to constrain indirect sensor orientation. ISPRS Journal of Photogrammetry and Remote Sensing, 2011, 66(3): 307-316
    [11] McGlone J C. Bundle adjustment with geometric constraints for hypothesis evaluation. sl ISPRS Journal of Photogrammetry and Remote Sensing, 1996. B3-III529-534
    [12] Hartley R I, Zisserman A. Multiple View Geometry in Computer Vision. Cambridge: Cambridge University Press, 2004
    [13] Triggs B, McLauchlan P F, Hartley R I, Fitzgibbon A W. Bundle adjustment-a modern synthesis. In: Proceedings of the International Workshop on Vision Algorithms: Theory and Practice. London, UK: IEEE, 2000. 298-372
    [14] Wedderburn J H M. Lectures on Matrices. Providence: American Mathematical Society, 1934
    [15] Timothy A D. Direct Methods for Sparse Linear Systems. Philadelphia: Society for Industrial and Applied Mathematics, 2006
    [16] Rotkin V, Toledo S. The design and implementation of a new out-of-core sparse cholesky factorization method. ACM Transactions on Mathematical Software, 2004, 30(1): 19-46
    [17] Toldo R, Fusiello A. Robust multiple structures estimation with J-linkage. In: Proceedings of the 10th European Conference on Computer Vision: Part I. Marseille. France: Springer-Verlag, 2008. 537-547
    [18] Torr P H S, Zisserman A. MLESAC: a new robust estimator with application to estimating image geometry. Computer Vision and Image Understanding, 2000, 78(1): 138-156
  • 加载中
计量
  • 文章访问数:  2515
  • HTML全文浏览量:  72
  • PDF下载量:  1513
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-12-13
  • 修回日期:  2013-08-13
  • 刊出日期:  2014-08-20

目录

    /

    返回文章
    返回