2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多智能体系统的最优持久编队生成策略

罗小元 杨帆 李绍宝 关新平

罗小元, 杨帆, 李绍宝, 关新平. 多智能体系统的最优持久编队生成策略. 自动化学报, 2014, 40(7): 1311-1319. doi: 10.3724/SP.J.1004.2014.01311
引用本文: 罗小元, 杨帆, 李绍宝, 关新平. 多智能体系统的最优持久编队生成策略. 自动化学报, 2014, 40(7): 1311-1319. doi: 10.3724/SP.J.1004.2014.01311
LUO Xiao-Yuan, YANG Fan, LI Shao-Bao, GUAN Xin-Ping. Generation of Optimally Persistent Formation for Multi-agent Systems. ACTA AUTOMATICA SINICA, 2014, 40(7): 1311-1319. doi: 10.3724/SP.J.1004.2014.01311
Citation: LUO Xiao-Yuan, YANG Fan, LI Shao-Bao, GUAN Xin-Ping. Generation of Optimally Persistent Formation for Multi-agent Systems. ACTA AUTOMATICA SINICA, 2014, 40(7): 1311-1319. doi: 10.3724/SP.J.1004.2014.01311

多智能体系统的最优持久编队生成策略

doi: 10.3724/SP.J.1004.2014.01311
基金项目: 

国家重点基础研究发展计划(973计划)(2010CB731800),国家自然科学基金(61074065,61375105),河北省自然科学基金(F2012203119)资助

详细信息
    作者简介:

    杨帆 燕山大学控制理论与控制工程专业硕士研究生. 2011 年于燕山大学获得学士学位. 主要研究方向为无线传感器网络控制,多智能体协调控制.E-mail:ffanyangy@163.com

Generation of Optimally Persistent Formation for Multi-agent Systems

Funds: 

Supported by National Basic Research Program of China (973 Program) (2010CB731800), National Natural Science Foundation of China (61074065,61375105), and Natural Science Foundation of Hebei Province (F2012203119)

  • 摘要: 针对二维空间中减少智能体间通信链路的能量消耗问题,提出了一种基于最优刚性编队的最优持久编队生成算法.算法提出了针对智能体连通度数目的有向化操作方法,通过层层缩减最小刚性图范围的方式生成最优持久图,这种方法能对任意最小刚性图进行持久化,从理论上证明了算法的可操作性.仿真结果验证了算法的有效性.
  • [1] Liu Y, Jia Y M. An iterative learning approach to formation control of multi-agent systems. Systems and Control Letters, 2012, 61(1): 148-154
    [2] Lu X Q, Austin F, Chen S H. Formation control for second-order multi-agent systems with time-varying delays under directed topology. Communications in Nonlinear Science and Numerical Simulation, 2012, 17(3): 1382-1391
    [3] Chen Yang-Yang, Tian Yu-Ping. Directed coordinated control for multi-agent formation motion on a set of given curves. Acta Automatica Sinica, 2009, 35(12): 1541-1549(陈杨杨, 田玉平. 多智能体沿多条给定路径编队运动的有向协同控制. 自动化学报, 2009, 35(12): 1541-1549)
    [4] Zhou J, Wu X Q, Yu W W, Small M, Lu J A. Flocking of multi-agent dynamical systems based on pseudo-leader mechanism. Systems & Control Letters, 2012, 61(1): 195-202
    [5] Wen G H, Duan Z S, Li Z K, Chen G R. Flocking of multi-agent dynamical systems with intermittent nonlinear velocity measurements. International Journal of Robust and Nonlinear Control, 2012, 22(16): 1790-1805
    [6] Huang Q Z. Consensus analysis of multi-agent discrete-time systems. Acta Automatica Sinica, 2012, 38(7): 1127-1133
    [7] Ding L, Han Q L, Guo G. Network-based leader-following consensus for distributed multi-agent systems. Automatica, 2013, 49(7): 2281-2286
    [8] Olfati-Saber R. Flocking for multi-agent dynamic systems: algorithms and theory. IEEE Transactions on Automatic Control, 2006, 51(3): 401-420
    [9] Hendrickx J M, Anderson B D O, Delvenne J C, Blondel V D. Directed graphs for the analysis of rigidity and persistence in autonomous agent systems. International Journal of Robust and Nonlinear Control, 2007, 17(10-11): 960-981
    [10] Anderson B D O, Yu C B, Fidan B, Hendrickx J M. Rigid graph control architectures for autonomous formations. IEEE Control Systems Magazine, 2008, 28(6): 48-63
    [11] Cao H, Bai Y Q, Chen J, Fang H. Control of 2D minimally persistent formations with three co-leaders in a cycle. International Journal of Advanced Robotic Systems, 2013, 10(21): 1-9
    [12] Kwang K O, Hyo S A. Local asymptotic convergence of a cycle-free persistent formation of double-integrators in three-dimensional space. In: Proceedings of the 2012 IEEE International Symposium on Intelligent Control. Dubrovnik, Croatia: IEEE, 2012. 692-696
    [13] Park M C, Oh K K, Ahn H S. Modified gradient control for acyclic minimally persistent formations to escape from collinear position. In: Proceedings of the 51st Annual Conference on Decision and Control. Maui, USA: IEEE, 2012. 1423-1427
    [14] Shi G D, Johansson K H. Persistent graphs and consensus convergence. In: Proceedings of the 51st Annual Conference on Decision and Control. Maui, USA: IEEE, 2012. 2046-2051
    [15] Hendrickx J M, Fidan B, Yu C B, Anderson B D O, Blondel V D. Elementary operations for the reorganization of minimally persistent formations. In: Proceedings of the 2006 International Symposium on Mathematical Theory of Networks and Systems. Kyoto, Japan: IEEE, 2006. 859-873
    [16] Hendrickx J M, Fidan B, Yu C B, Anderson B D O, Blondel V D. Primitive operations for the construction and reorganization of minimally persistent formations. Multiagent Systems, 2006, 62(21): 1-26
    [17] Smith B S, Egerstedt M B, Howard A M. Automatic generation of persistent formations for multi-agent networks under range constraints. In: Proceedings of the 1st International Conference on Robot Communication and Coordination. Athens, Greece: Georgia Institute of Technology, 2007. 1-8
    [18] Ren R, Zhang Y Y, Luo X Y, Li S B. Automatic generation of optimally rigid formations using decentralized methods. International Journal of Automation and Computing, 2010, 7(4): 557-564
    [19] Luo X Y, Li S B, Guan X P. Automatic generation of min-weighted persistent formations. Chinese Physics B, 2009, 18(8): 3104-3114
    [20] Luo Xiao-Yuan, Shao Shi-Kai, Guan Xin-Ping, Zhao Yuan-Jie. Dynamic generation and control of optimally persistent formation for multi-agent systems. Acta Automatica Sinica, 2013, 39(9): 1431-1438(罗小元, 邵士凯, 关新平, 赵渊洁. 多智能体最优持久编队动态生成与控制. 自动化学报, 2013, 39(9): 1431-1438)
    [21] Yoshinari A, Nishivama H, Kato N, Sung D K. Dynamic topology update mechanism in local tree-based reliable topology (LTRT) based MANETs. In: Proceedings of the 2012 IEEE International Conference on Communications. Ottawa, Canada: IEEE, 2012. 281-285
  • 加载中
计量
  • 文章访问数:  2081
  • HTML全文浏览量:  126
  • PDF下载量:  1112
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-07-01
  • 修回日期:  2013-11-05
  • 刊出日期:  2014-07-20

目录

    /

    返回文章
    返回