2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种新的基于保证定界椭球算法的非线性集员滤波器

周波 钱堃 马旭东 戴先中

周波, 钱堃, 马旭东, 戴先中. 一种新的基于保证定界椭球算法的非线性集员滤波器. 自动化学报, 2013, 39(2): 150-158. doi: 10.3724/SP.J.1004.2013.00150
引用本文: 周波, 钱堃, 马旭东, 戴先中. 一种新的基于保证定界椭球算法的非线性集员滤波器. 自动化学报, 2013, 39(2): 150-158. doi: 10.3724/SP.J.1004.2013.00150
ZHOU Bo, QIAN Kun, MA Xu-Dong, DAI Xian-Zhong. A New Nonlinear Set Membership Filter Based on Guaranteed Bounding Ellipsoid Algorithm. ACTA AUTOMATICA SINICA, 2013, 39(2): 150-158. doi: 10.3724/SP.J.1004.2013.00150
Citation: ZHOU Bo, QIAN Kun, MA Xu-Dong, DAI Xian-Zhong. A New Nonlinear Set Membership Filter Based on Guaranteed Bounding Ellipsoid Algorithm. ACTA AUTOMATICA SINICA, 2013, 39(2): 150-158. doi: 10.3724/SP.J.1004.2013.00150

一种新的基于保证定界椭球算法的非线性集员滤波器

doi: 10.3724/SP.J.1004.2013.00150
详细信息
    通讯作者:

    周波

A New Nonlinear Set Membership Filter Based on Guaranteed Bounding Ellipsoid Algorithm

  • 摘要: 基于未知但有界噪声假设的集员滤波器为传统的概率化滤波方法提供了一种可行的替代选择, 然而其潜在的计算负担和保守性考虑制约了该方法的实际应用. 本文提出一种新的基于保证定界椭球近似的改进集员滤波方法, 用于解决针对非线性系统的状态估计问题,在保证实时性的前提下降低了算法的保守性. 首先,对非线性模型进行线性化处理,采用DC (Difference of convex)规划方法对线性化误差进行外包定界, 并通过椭球近似将其融合到系统噪声中; 在此基础上提出了一种结合了椭球直和计算和基于迭代外定界椭球算法的椭球--带交集计算 所构成的经典预测--更新步骤来估计得到状态的可行椭球集. 与常规的非线性扩展集员滤波方法的仿真比较表明了本文所提出算法的有效性和改进性能.
  • [1] Bar-Shalom Y, Li X R, Kirubarajan T. Estimation with Applications to Tracking and Navigation. New York: Willey, 2002. 200-217[2] Arulampalam M S, Maskell S, Gordon N, Clapp T. A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking. IEEE Transactions on Signal Processing, 2002, 50(2): 174-188[3] Einicke G A, White L B. Robust extended Kalman filtering. IEEE Transactions on Signal Processing, 1999, 47(9): 2596-2599[4] Di Marco M, Garulli A, Lacroix S, Vicino A. Set membership localization and mapping for autonomous navigation. International Journal of Robust and Nonlinear Control, 2001, 11(7): 709-743[5] Calafiore G. Reliable localization using set-valued nonlinear filters. IEEE Transactions on Systems, Man, and Cybernetics, Part A: Systems and Humans, 2005, 35(2): 189-197[6] Jaulin L. A nonlinear set membership approach for the localization and map building of underwater robots. IEEE Transactions on Robotics, 2009, 25(1): 88-98[7] Yu W, De Jesús Rubio J. Recurrent neural networks training with stable bounding ellipsoid algorithm. IEEE Transactions on Neural Networks, 2009, 20(6): 983-991[8] Fagarasan I, Ploix S, Gentil S. Causal fault detection and isolation based on a set-membership approach. Automatica, 2004, 40(12): 2099-2110[9] Combastel C, Zhang Q H. Robust fault diagnosis based on adaptive estimation and set-membership computations. In: Proceedings of the 6th IFAC Symposium on Fault Detection, Supervision and Safety of Technical. Beijing, China: IFAC, 2006. 7314-7319[10] Fogel E, Huang Y F. On the value of information in system identification — bounded noise case. Automatica, 1982, 18(2): 229-238[11] Kurzhanskiy A A, Varaiya P. Ellipsoidal techniques for reachability analysis of discrete-time linear systems. IEEE Transactions on Automatic Control, 2007, 52(1): 26-38[12] Kieffer M, Jaulin L, Walter E. Guaranteed recursive nonlinear state bounding using interval analysis. International Journal of Adaptive Control and Signal Processing, 2006, 16(3): 193-218[13] Chisci L, Garulli A, Zappa G. Recursive state bounding by parallelotopes. Automatica, 1996, 32(7): 1049-1055[14] Chisci L, Garulli A, Vicino A, Zappa G. Block recursive parallelotopic bounding in set membership identification. Automatica, 1998, 34(1): 15-22[15] Alamo T, Bravo J M, Camacho E F. Guaranteed state estimation by zonotopes. Automatica, 2005, 41(6): 1035-1073[16] Alamo T, Bravo J M, Redondo M J, Camacho E F. A set-membership state estimation algorithm based on DC programming. Automatica, 2008, 44(1): 216-224[17] Ros L, Sabaster A, Thomas F. An ellipsoidal calculus based on propagation and fuse. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 2002, 32(4): 430-442[18] Schweppe F C. Recursive state estimation: unknown but bounded errors and system inputs. IEEE Transactions on Automatic Control, 1968, 13(1): 22-38[19] Bertsekas D P, Rhodes I B. Recursive state estimation for a set-membership description of uncertainty. IEEE Transactions on Automatic Control, 1971, 16(2): 117-128[20] Belforte G, Bona B. An improved parameter identification algorithm for signals with unknown-but-bounded errors. In: Proceedings of the 7th IFAC/IFORS Symposium on Identification and System Parameter Estimation. York, UK: IFAC, 1985. 1507-1511[21] Durieu C, Walter E, Polyak B T. Multi-input multi-output ellipsoidal state bounding. Journal of Optimization Theory and Applications, 2001, 111(2): 273-303[22] Chernousko F L, Rokityanskii D Y. Ellipsoidal bounds on reachable sets of dynamical systems with matrices subjected to uncertain perturbations. Journal of Optimization Theory and Applications, 2000, 104(1): 1-19[23] Maksarov D G, Norton J P. Computationally efficient algorithms for state estimation with ellipsoidal approximations. International Journal of Adaptive Control and Signal Processing, 2002, 16(6): 411-434[24] Shamma J S, Tu K Y. Approximate set-valued observers for nonlinear systems. IEEE Transactions on Automatic Control, 1997, 42(5): 648-658[25] Scholte E, Campell M E. A nonlinear set-membership filter for on-line applications. International Journal of Robust and Nonlinear Control, 2003, 13(15): 1337-1358[26] Horst R, Thoai N V. DC programming: overview. Journal of Optimization Theory and Applications, 1999, 103(1): 1-43[27] Boyd S, Vamdenberghe L. Convex Optimization. Cambridge: Cambridge University Press, 2004. 561-615[28] Zhou B, Han J D, Liu G J. A UD factorization-based nonlinear adaptive set-membership filter for ellipsoidal estimation. International Journal of Robust and Nonlinear Control, 2008, 18(16): 1513-1531
  • 加载中
计量
  • 文章访问数:  1997
  • HTML全文浏览量:  66
  • PDF下载量:  849
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-10-19
  • 修回日期:  2012-09-14
  • 刊出日期:  2013-02-20

目录

    /

    返回文章
    返回