2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于MIT规则的自适应扩展集员估计方法

宋大雷 吴冲 齐俊桐 韩建达

宋大雷, 吴冲, 齐俊桐, 韩建达. 基于MIT规则的自适应扩展集员估计方法. 自动化学报, 2012, 38(11): 1847-1860. doi: 10.3724/SP.J.1004.2012.01847
引用本文: 宋大雷, 吴冲, 齐俊桐, 韩建达. 基于MIT规则的自适应扩展集员估计方法. 自动化学报, 2012, 38(11): 1847-1860. doi: 10.3724/SP.J.1004.2012.01847
SONG Da-Lei, WU Chong, QI Jun-Tong, HAN Jian-Da. A MIT-based Nonlinear Adaptive Set-membership Filter for Ellipsoidal Estimation. ACTA AUTOMATICA SINICA, 2012, 38(11): 1847-1860. doi: 10.3724/SP.J.1004.2012.01847
Citation: SONG Da-Lei, WU Chong, QI Jun-Tong, HAN Jian-Da. A MIT-based Nonlinear Adaptive Set-membership Filter for Ellipsoidal Estimation. ACTA AUTOMATICA SINICA, 2012, 38(11): 1847-1860. doi: 10.3724/SP.J.1004.2012.01847

基于MIT规则的自适应扩展集员估计方法

doi: 10.3724/SP.J.1004.2012.01847
详细信息
    通讯作者:

    齐俊桐

A MIT-based Nonlinear Adaptive Set-membership Filter for Ellipsoidal Estimation

  • 摘要: 用于非线性椭球估计的自适应扩展集员(Adaptive extended set-membership filter, AESMF)算法在实际应用中存在着过程噪声设定椭球与真实噪声椭球失配的问题, 导致滤波器的估计出现偏差甚至发散. 本文提出了一种基于MIT规则过程噪声椭球最优化的自适应扩展集员估计算法(MIT-AESMF), 用于解决非线性系统时变状态和参数的联合估计和定界中过程噪声无法精确建模问题的新算法. 本算法通过MIT优化规则,在线计算使一步预测偏差包络椭球最小化的过程噪声包络椭球, 以此保证滤波器健康指标满足有效条件; 最后, 采用地面移动机器人状态和动力学参数联合估计验证了所提出方法的有效性.
  • [1] Haykin S, de Freitas N. Special issue on sequential state estimation. Proceedings of the IEEE, 2004, 92(3): 399-400[2] Ahrens J H, Khalil H K. Closed-loop behavior of a class of nonlinear systems under EKF-based control. IEEE Transactions on Automatic Control, 2007, 52(3): 536-540[3] Julier S J, Uhlmann J K. Unscented filtering and nonlinear estimation. Proceedings of IEEE, 2004, 92(3) 401-422[4] Song Q, Jiang Z, Han J D. UKF-based active model and adaptive inverse dynamics control for mobile robot. In: Proceedings of IEEE International Conference on Robotics and Automation. Roma, Italy: IEEE, 2007. 4164-4169[5] Salvatore L, Stasi S, Tarchioni L. A new EKF-based algorithm for flux estimation in induction machines. IEEE Transactions on Industrial Electronics, 1993, 40(5): 496-504[6] Julier S, Uhlmann J, Durrant-Whyte H F. A new method for the nonlinear transformation of means and covariances in filters and estimators. IEEE Transactions on Automatic Control, 2000, 45(3): 477-482[7] Ljung L. Asymptotic behavior of the extended Kalman filter as a parameter estimator for linear systems. IEEE Transactions on Automatic Control, 1979, 24(1): 36-50[8] Jiang Z, Song Q, He Y Q, Han J D. A novel adaptive unscented Kalman filter for nonlinear estimation. In: Proceedings of the 46th IEEE Conference on Decision and Control, 2007, New Orleans, LA, USA: IEEE, 2007. 4293-4298[9] Peng Y, Han J D, Huang Q J. Adaptive UKF based tracking control for unmanned trimaran vehicles. International Journal of Innovative Computing, Information and Control, 2009, 5(10): 3505-3516[10] Rao A K, Huang Y F. Analysis of finite precision effects on a recursive set membership parameter estimation algorithm. IEEE Transactions on Signal Processing, 1992, 40(12): 3081-3085[11] Schweppe F. Recursive state estimation: unknown but bounded errors and system inputs. IEEE Transactions on Automatic Control, 1968, 13(1): 22-28[12] Bertsekas D, Rhodes I. Recursive state estimation for a set-membership description of uncertainty. IEEE Transactions on Automatic Control, 1971, 16(2): 117-128[13] Fogel E, Huang Y F. On the value of information in system identification-bounded noise case. Automatica, 1982, 18(2): 229-238[14] Maksarov D G, Norton J P. State bounding with ellipsoidal set description of the uncertainty. International Journal of Control, 1996, 65(5): 847-866[15] Kurzhanski A B, Varaiya P. Ellipsoidal techniques for reachability analysis: internal approximation. Systems and Control Letters, 2000, 41(3): 201-211[16] Chernousko F L. Ellipsoidal state estimation for dynamical systems. Nonlinear Analysis: Theory, Methods and Applications, 2005, 63(5-7): 872-879[17] Polyak B T, Nazin S A, Durieu C, Walter E. Ellipsoidal parameter or state estimation under model uncertainty. Automatica, 2004, 40(7): 1171-1179[18] Scholte E, Campbell M E. A nonlinear set-membership filter for on-line applications. International Journal of Robust and Nonlinear Control, 2003, 13(15): 1337-1358[19] Zhou B, Han J D, Liu G J. A UD factorization-based nonlinear adaptive set-membership filter for ellipsoidal estimation. International Journal of Robust and Nonlinear Control, 2008, 18(16): 1513-1531[20] Zhou Bo, Han Jian-Da. A UD factorization-based adaptive extended set-membership filter. Acta Automatica Sinica, 2008, 34(2): 150-158 (周波, 韩建达. 基于UD分解的自适应扩展集员估计方法. 自动化学报, 2008, 34(2): 150-158)[21] Zhou B, Han J D. Nonlinear estimation methods for autonomous tracked vehicle with slip. Chinese Journal of Mechanical Engineering, 2007, 20(4): 1-7[22] Dierks T, Jagannathan S. Output feedback control of a quadrotor UAV using neural networks. IEEE Transactions on Neural Networks, 2010, 21(1): 50-66[23] Song Da-Lei, Qi Jun-Tong, Han Jian-Da, Wang Yue-Chao. Model identification and active modeling control for rotor fly-robot: theory and experiment. Acta Automatica Sinica, 2011, 37(4): 480-495 (宋大雷, 齐俊桐, 韩建达, 王越超. 旋翼飞行机器人系统建模与主动模型控制理论及实验研究. 自动化学报, 2011, 37(4): 480-495)[24] Zhao J, Zhu L, Zang X Z, Liu G F, Liu G. Dynamics analysis of a novel mine disaster searching robot. Applied Mechanics and Materials, 2011, 39: 363-368[25] Gu D Z, Walker D K, Randa J. Variable termination unit for noise-parameter measurement. IEEE Transactions on Instrumentation and Measurement, 2009, 58(4): 1072-1077[26] Song Q, Han J D. An adaptive UKF algorithm for the state and parameter estimations of a mobile robot. Acta Automatica Sinica, 2008, 34(1): 72-79
  • 加载中
计量
  • 文章访问数:  1618
  • HTML全文浏览量:  37
  • PDF下载量:  760
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-11-18
  • 修回日期:  2012-01-10
  • 刊出日期:  2012-11-20

目录

    /

    返回文章
    返回