2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于第二代Bandelet变换的抗几何攻击图像水印

綦科 谢冬青

綦科, 谢冬青. 基于第二代Bandelet变换的抗几何攻击图像水印. 自动化学报, 2012, 38(10): 1646-1653. doi: 10.3724/SP.J.1004.2012.01646
引用本文: 綦科, 谢冬青. 基于第二代Bandelet变换的抗几何攻击图像水印. 自动化学报, 2012, 38(10): 1646-1653. doi: 10.3724/SP.J.1004.2012.01646
QI Ke, XIE Dong-Qing. Watermarking Scheme Against Geometrical Attacks Based on Second Generation Bandelet. ACTA AUTOMATICA SINICA, 2012, 38(10): 1646-1653. doi: 10.3724/SP.J.1004.2012.01646
Citation: QI Ke, XIE Dong-Qing. Watermarking Scheme Against Geometrical Attacks Based on Second Generation Bandelet. ACTA AUTOMATICA SINICA, 2012, 38(10): 1646-1653. doi: 10.3724/SP.J.1004.2012.01646

基于第二代Bandelet变换的抗几何攻击图像水印

doi: 10.3724/SP.J.1004.2012.01646
详细信息
    通讯作者:

    谢冬青

Watermarking Scheme Against Geometrical Attacks Based on Second Generation Bandelet

  • 摘要: 抗几何攻击的鲁棒图像水印设计是目前水印技术研究的难点和热点之一. 文中分析了图像的Bandelet变换特性, 提出了一种以图像特征点矢量集为特征向量的回归支持向量机(Support vector regression, SVR)和第二代 Bandelet变换的抗几何攻击图像水印算法,采取的主要方法包括: 1)在Bandelet变换提取的刻画图像局部特征的几何流系数上, 采用奇偶量化嵌入水印; 2)利用Harris-Laplace算子从归一化的含水印图像中提取具有几何形变鲁棒性的图像特征点,构造特征点矢量集 作为特征向量,应用回归支持向量机对几何变换参数进行训练学习; 3)水印检测时, 先利用SVR训练模型得到待检测图像所受几何攻击的参数并作几何校正,然后通过奇偶检测器盲提取水印.仿真实验表明,所提出的水印算 法不仅具有良好的透明性,而且对常规图像处理、一般性几何攻击和组合攻击均具有良好的鲁棒性.
  • [1] Lou Ou-Jun, Wang Zheng-Xuan. A contourlet-domain watermarking algorithm against geometric attacks based on feature template. Chinese Journal of Computers, 2009, 32(2): 308-317(楼偶俊, 王钲旋. 基于特征点模板的 Contourlet域抗几何攻击水印算法研究. 计算机学报, 2009, 32(2): 308-317)[2] Alghoniemy M, Tewk A H. Geometric invariance in image watermarking. IEEE Transactions on Image Processing, 2004, 13(2): 145-153[3] Barni M. Effectiveness of exhaustive search and template matching against watermark desynchronization. IEEE Signal Processing Letters, 2005, 12(2): 158-161[4] Lee H Y, Kim H S, Lee H K. Robust image watermarking using local invariant features. Optical Engineering, 2006, 45(3): 1-10[5] Deng Cheng, Li Jie, Gao Xin-Bo. Geometric attacks resistant image watermarking in affine covariant regions. Acta Automatica Sinica, 2010, 36(2): 221-228(邓成, 李洁, 高新波. 基于仿射协变区域的抗几何攻击图像水印算法. 自动化学报, 2010, 36(2): 221-228)[6] Wang Xiang-Yang, Wu Jun, Hou Li-Min. A feature-based digital image watermarking algorithm. Acta Electronica Sinica, 2007, 35(7): 1318-1322(王向阳, 邬俊, 侯丽敏. 一种基于图像特征点的数字水印嵌入方法. 电子学报, 2007, 35(7): 1318-1322)[7] Li Lei-Da, Guo Bao-Long, Wu Xiao-Yue. A new spatial domain image watermarking scheme resisting geometric attacks. Acta Automatica Sinica, 2008, 34(10): 1235-1242(李雷达, 郭宝龙, 武晓钥. 一种新的空域抗几何攻击图像水印算法. 自动化学报, 2008, 34(10): 1235-1242)[8] Seo J S, Yoo C D. Image watermarking based on invariant regions of scale-space representation. IEEE Transactions on Signal Processing, 2006, 54(4): 1537-1549[9] Tsai H H, Sun D W. Color image watermark extraction based on support vector machines. Information Sciences, 2007, 177(2): 550-569[10] Wang X Y, Xu Z H, Yang H Y. A robust image watermarking algorithm using SVR detection. Expert Systems with Applications, 2009, 36(5): 9056-9064[11] Wang X Y, Yang H Y, Cui C Y. An SVM-based robust digital image watermarking against desynchronization attacks. Signal Processing, 2008, 88(9): 2193-2205[12] Le Pennec E, Mallat S. Sparse geometric image representations with Bandelets. IEEE Transactions on Image Processing, 2005, 14(4): 423-438[13] Yang Yue-Xiang, Luo Yong, Ye Zhao-Hui, Cheng Li-Zhi. A complete frequency lossless watermarking method via Bandelet and adaptive matrix norm. Journal of Computer Research and Development, 2007, 44(12): 1996-2003(杨岳湘, 罗永, 叶昭晖,成礼智. 基于 Bandelet与自适应矩阵范数的全频域无损水印方法. 计算机研究与发展, 2007, 44(12): 1996 -2003)[14] Liu Xu-Chong, Luo Yong, Wang Jian-Xin, Wang Jie. Watermarking algorithm for image authentication based on second generation Bandelet. Journal on Communications, 2010, 31(12): 123-130(刘绪崇, 罗永, 王建新, 汪洁. 基于第二代Bandelet变换的图像认证水印算法. 通信学报, 2010, 31(12): 123-130)[15] Mikolajczyk K, Schmid C. Scale affine invariant interest point detectors. International Journal of Computer Vision, 2004, 60(1): 63-86[16] Alghoniemy M, Tewfik A H. Geometric invariance in image watermarking. IEEE Transactions on Image Processing, 2004, 13(2): 145-153[17] Petitcolas F A P. Watermarking schemes evaluation. IEEE Signal Processing Magazine, 2000, 17(5): 58-64
  • 加载中
计量
  • 文章访问数:  1836
  • HTML全文浏览量:  36
  • PDF下载量:  1007
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-09-28
  • 修回日期:  2012-06-14
  • 刊出日期:  2012-10-20

目录

    /

    返回文章
    返回