2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

粒子群算法的交互性与随机性分析

刘建华 刘国买 杨荣华 胡文瑜

刘建华, 刘国买, 杨荣华, 胡文瑜. 粒子群算法的交互性与随机性分析. 自动化学报, 2012, 38(9): 1471-1484. doi: 10.3724/SP.J.1004.2012.01471
引用本文: 刘建华, 刘国买, 杨荣华, 胡文瑜. 粒子群算法的交互性与随机性分析. 自动化学报, 2012, 38(9): 1471-1484. doi: 10.3724/SP.J.1004.2012.01471
LIU Jian-Hua, LIU Guo-Mai, YANG Rong-Hua, HU Wen-Yu. Analysis of Interactivity and Randomness in Particle Swarm Optimization. ACTA AUTOMATICA SINICA, 2012, 38(9): 1471-1484. doi: 10.3724/SP.J.1004.2012.01471
Citation: LIU Jian-Hua, LIU Guo-Mai, YANG Rong-Hua, HU Wen-Yu. Analysis of Interactivity and Randomness in Particle Swarm Optimization. ACTA AUTOMATICA SINICA, 2012, 38(9): 1471-1484. doi: 10.3724/SP.J.1004.2012.01471

粒子群算法的交互性与随机性分析

doi: 10.3724/SP.J.1004.2012.01471
详细信息
    通讯作者:

    刘建华

Analysis of Interactivity and Randomness in Particle Swarm Optimization

  • 摘要: 在现有分析结论的基础上, 分别采用优化的凸性理论和概率收敛理论, 分析了粒子群 (Particle swarm optimization, PSO) 算法的交互性和随机性对算法的影响. 分析得出, 在不考虑随机性的条件下, 当 PSO 算法优化单峰函数时, 交互性使粒子最终收敛于全局最优粒子位置; 当 PSO 算法优化多峰函数时, 交互性未必使粒子最终收敛于全局最优位置. 但如果考虑随机性, 算法优化的目标函数无论是单峰函数还是多峰函数, 粒子都会依概率收敛于最优位置. 通过基准函数的实验验证了分析的结论.
  • [1] Eberhart R C, Kennedy J. A new optimizer using particle swarm theory. In: Proceedings of the 6th International Symposium on Micro Machine and Human Science. Nagoya, Japan: IEEE, 1995. 39-43[2] Kennedy J, Eberhart R C. Particle swarm optimization. In: Proceedings of the 1995 IEEE Internationa1 Conference on Neural Networks. Perth, WA, Australia: IEEE, 1995. 1942- 1948[3] Shi Y H, Eberhart R C. A modified particle swarm optimizer. In: Proceedings of the 1998 IEEE International Conference on Evolutionary Computation. Anchorage, AK, USA: IEEE, 1998. 69-73[4] Poli R, Kennedy J, Blackwell T. Particle swarm optimization: an overview. Swarm Intelligence, 2007, 1(1): 33-57[5] Kang Qi, Wang Lei, An Jing, Wu Qi-Di. Approximate dynamic programming based parameter optimization of particle swarm systems. Acta Automatica Sinica, 2010, 36(8): 1171 -1181 (康琦, 汪镭, 安静, 吴启迪. 基于近似动态规划的微粒群系统参数优化研究. 自动化学报, 2010, 36(8): 1171-1181)[6] Alfi A. PSO with adaptive mutation and inertia weight and its application in parameter estimation of dynamic systems. Acta Automatica Sinica, 2011, 37(5): 541-549[7] Huang Fa-Liang, Xiao Nan-Feng. Discovering overlapping communities based on line graph and PSO. Acta Automatica Sinica, 2011, 37(9): 1140-1144 (黄发良, 肖南峰. 基于线图与 PSO 的网络重叠社区发现. 自动化学报, 2011, 37(9): 1140-1144)[8] Banks A, Vincent J, Anyakoha C. A review of particle swarm optimization. Part II: hybridisation, combinatorial, multicriteria and constrained optimization, and indicative applications. Natural Computing, 2008, 7(1): 109-124[9] Ozcan E, Mhoan C K. Analysis of a simple particle swarm optimization system. Intelligent Engineering Systems Through Artificial Neural Networks, 1998, 8: 253-258[10] Ozcan E, Mohan C K. Particle swarm optimization: surfing the waves. In: Proceedings of the 1999 Congress on Evolutionary Computation. Washington, DC, USA: IEEE, 1999. 1939-1944[11] Clerc M, Kennedy J. The particle swarm-explosion, stability, and convergence in a multidimensional complex space. IEEE Transactions on Evolutionary Computation, 2002, 6(1): 58-73[12] Solis F J, Wets R J B. Minimization by random search techniques. Mathematics of Operations Research, 1981, 6(1): 19 -30[13] Van de Bergh F. An Analysis of Particle Swarm Optimizer [Ph.D. dissertation], University of Pretoria, South Africa, 2002[14] Van de Bergh F, Engelbrecht A P. A convergence proof for the particle swarm optimiser. Fundamenta Informaticae, 2010, 105(4): 341-374[15] Blackwell T M. Particle swarms and population diversity. Soft Computing —— A Fusion of Foundations, Methodologies and Applications, 2005, 9(11): 793-802[16] Trelea I C. The particle swarm optimization algorithm: convergence analysis and parameter selection. Information Processing Letters, 2003, 85(6): 317-325[17] Ghosh S, Das S, Kundu D, Suresh K, Abraham A. Inter-particle communication and search-dynamics of lbest particle swarm optimizers: an analysis. Information Sciences, 2012, 182(1): 156-168[18] Fernandez-Martinez J L, Garcia-Gonzalo E. Stochastic stability analysis of the linear continuous and discrete PSO models. IEEE Transactions on Evolutionary Computation, 2011, 15(3): 405-423[19] Zheng Y L, Ma L H, Zhang L Y, Qian J X. On the convergence analysis and parameter selection in particle swarm optimization. In: Proceedings of the 2nd International Conference on Machine Learning and Cybernetics. Xi'an, China: IEEE, 2003. 1802-1807[20] Zhang L P, Yu H J, Hu S X. Optimal choice of parameters for particle swarm optimization. Journal of Zhenjian University (Science), 2005, 6A(6): 528-534[21] Pan Feng, Chen Jie, Gan Ming-Gang, Cai Tao, Tu Xu Yan. Model analysis of particle swarm optimizer. Acta Automatica Sinica, 2006, 32(3): 368-375(潘峰, 陈杰, 甘明刚, 蔡涛, 涂序彦. 粒子群优化算法模型分析. 自动化学报, 2006, 32(3): 368-375)[22] Li Ning. Theory Analysis of Particle Swarm Optimization and Its Application Research [Ph.D. dissertation], Huazhong University of Science and Technology, China, 2007 (李宁. 粒子群优化算法的理论分析与应用研究 [博士学位论文], 华中科技大学, 中国, 2007)[23] Li Ning, Sun De-Bao, Zou Tong, Qin Yuan-Qing, Wei Yu. An analysis for a particle's trajectory of PSO based on difference equation. Chinese Journal of Computers, 2006, 29(11): 2052 -2061 (李宁, 孙德宝, 邹彤, 秦元庆, 尉宇. 基于差分方程的 PSO 算法粒子运动轨迹分析. 计算机学报, 2006, 29(11): 2052-2061)[24] Jin Xin-Lei, Ma Long-Hua, Wu Tie-Jun, Qian Ji-Xin. Convergence analysis of the particle swarm optimization based on stochastic processes. Acta Automatica Sinica, 2007, 33(12): 1263-1268 (金欣磊, 马龙华, 吴铁军, 钱积新. 基于随机过程的 PSO 收敛性分析. 自动化学报, 2007, 33(12): 1263-1268)[25] Ren Zi-Hui, Wang Jian, Gao Yue-Lin. The global convergence analysis of particle swarm optimization algorithm based on Markov chain. Control Theory and Applications, 2011, 28(4): 463-467 (任子晖, 王坚, 高岳林. 马尔科夫链的粒子群优化算法全局收敛性分析. 控制理论与应用, 2011, 28(4): 463-467)[26] Shen Yuan-Xia, Wang Guo-Yin. Probabilistic characteristics analysis of particle swarm optimization and its improved algorithm. Control and Decision, 2011, 21(6): 816-820 (申元霞, 王国胤. 粒子群优化算法的概率特性分析及算法改进. 控制与决策, 2011, 21(6): 816-820)[27] Liu Jian-Hua, Yang Rong-Hua, Sun Shui-Hua. The analysis of binary particle swarm optimization. Journal of Nanjing University (Natural Sciences), 2011, 47(5): 504-514 (刘建华, 杨荣华, 孙水华. 离散二进制粒子群算法分析. 南京大学学报 (自然科学版), 2011, 47(5): 504-514)[28] Horst R, Pardalos P M, Thoai N V [Author], Hao Si-Te [Translator]. Introduction to Global Optimization. Beijing: Tsinghua University Press, 2003. 120-207 (Horst R, Pardalos P M, Thoai N V [著], 郝斯特 [译]. 全局优化引论. 北京: 清华大学出版社, 2003. 120-207)
  • 加载中
计量
  • 文章访问数:  2192
  • HTML全文浏览量:  39
  • PDF下载量:  1021
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-07-25
  • 修回日期:  2012-01-10
  • 刊出日期:  2012-09-20

目录

    /

    返回文章
    返回