2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

ML 型迁移学习模糊系统

蒋亦樟 邓赵红 王士同

蒋亦樟, 邓赵红, 王士同. ML 型迁移学习模糊系统. 自动化学报, 2012, 38(9): 1393-1409. doi: 10.3724/SP.J.1004.2012.01393
引用本文: 蒋亦樟, 邓赵红, 王士同. ML 型迁移学习模糊系统. 自动化学报, 2012, 38(9): 1393-1409. doi: 10.3724/SP.J.1004.2012.01393
JIANG Yi-Zhang, DENG Zhao-Hong, WANG Shi-Tong. Mamdani-Larsen Type Transfer Learning Fuzzy System. ACTA AUTOMATICA SINICA, 2012, 38(9): 1393-1409. doi: 10.3724/SP.J.1004.2012.01393
Citation: JIANG Yi-Zhang, DENG Zhao-Hong, WANG Shi-Tong. Mamdani-Larsen Type Transfer Learning Fuzzy System. ACTA AUTOMATICA SINICA, 2012, 38(9): 1393-1409. doi: 10.3724/SP.J.1004.2012.01393

ML 型迁移学习模糊系统

doi: 10.3724/SP.J.1004.2012.01393

Mamdani-Larsen Type Transfer Learning Fuzzy System

  • 摘要: 经典模糊系统构建方法训练时通常仅考虑单一的场景,其伴随的一个重要缺陷是: 如当前场景重要信息缺失,则受训所得系统泛化能力较差.针对此问题, 以Mamdani-Larsen (ML)型模糊系统为对象,探讨了具有迁移学习能力的模糊系统, 即ML型迁移学习模糊系统. ML型迁移学习模糊系统不仅能充分利用当前场景的数据信息, 而且能有效地利用历史知识来进行学习,具有通过迁移历史场景知识来弥补当前场景信息 缺失的能力.具体地,基于经典的压缩集密度估计(Reduced set density estimator, RSDE) ML型模糊系统构建方法, 通过引入迁移学习机制提出了一种基于密度估计的ML型迁移模糊系统构建方法. 在模拟数据和真实数据上的实验研究亦验证了该迁移模糊系统在信息缺失场景下较之于 传统模糊系统建模方法的更好适应性.
  • [1] Zadeh L A. Probability theory and fuzzy logic are complementary rather than competitive. Technometrics, 1995, 37(3): 271-276[2] Dubois D, Prade H. Fuzzy sets and probability: misunderstandings, bridges, and gaps. In: Proceedings of the 2nd IEEE Conference on Fuzzy Systems. San Francisco, CA: IEEE, 1993. 1059-1068[3] Mendel J M. Uncertain Rule-based Fuzzy Logic Systems Introduction and New Directions. New York: Prentice-Hall, 2000[4] Zhu L, Chung F L, Wang S T. Generalized fuzzy C-means clustering algorithm with improved fuzzy partitions. IEEE Transactions on Systems, Man, and Cybernetics, 2009, 39(3): 578-591[5] Astrm K J, McAvoy T J. Intelligent control. Journal of Process Control, 1993, 2(3): 115-127[6] Deng Z H, Choi K S, Chung F L, Wang S T. Scalable TSK fuzzy modeling for very large datasets using minimal-enclosing-ball approximation. IEEE Transactions on Fuzzy Systems, 2011, 19(2): 210-226[7] Chung F L, Deng Z H, Wang S T. An adaptive fuzzy-inference-rule-based flexible model for automatic elastic image registration. IEEE Transactions on Fuzzy Systems, 2009, 17(5): 995-1010[8] Dai X L, Khorram S. A feature-based image registration algorithm using improved chain-code representation combined with invariant moments. IEEE Transactions on Geoscience and Remote Sensing, 1999, 37(5): 2351-2362[9] Le Moigne J, Campbell W J, Cbased on the correlation of wavelet features. IEEE Transactions on Geoscience and Remote Sensing, 2002, 40(8): 1849-1864[10] Juang C F, Chiu S H, Chang S W. A self-organizing TS-type fuzzy network with support vector learning and its application to classification problems. IEEE Transactions on Fuzzy Systems, 2007, 15(5): 998-1008[11] Juang C F, Chiu S H, Shiu S J. Fuzzy system learned through fuzzy clustering and support vector machine for human skin color segmentation. IEEE Transactions on Systems, Man, and Cybernetics, 2007, 37(6): 1077-1087[12] Juang C F, Hsieh C D. TS-fuzzy system-based support vector regression. Fuzzy Sets and Systems, 2009, 160(17): 2486 -2504[13] Lin C T, Yeh C M, Liang S F, Chung J F, Kumar N. Support-vector-based fuzzy neural network for pattern classification. IEEE Transactions on Fuzzy Systems, 2006, 14(1): 31-41[14] Pan J L, Yang Q. A survey on transfer learning. IEEE Transactions on Knowledge and Data Engineering, 2010, 22(10): 1345-1359[15] Raina R, Battle A, Lee H, Packer B, Ng A Y. Self-taught learning: transfer learning from unlabeled data. In: Proceedings of the 24th International Conference on Machine Learning. New York, NY, USA: ACM, 2007. 759-766[16] Xue G R, Dai W Y, Yang Q, Yu Y. Topic-bridged PLSA for cross-domain text classification. In: Proceedings of the 31st annual international ACM SIGIR conference on Research and development in information retrieval. New York, NY, USA: ACM, 2008. 627-634[17] Pan S J, Tsang I W, Kwok J T, Yang Q. Domain adaptation via transfer component analysis. In: Proceedings of the 21st international jont conference on Artifical intelligence. San Francisco, CA, USA: ACM, 2009. 1187-1192[18] Glorot X, Bordes A, Bengio Y. Domain adaptation for large-scale sentiment classification: a deep learning approach. In: Proceedings of the 28th International Conference on Machine Learning. Bellevue, Washington, USA: ACM, 2011. 513-520[19] Duan L X, Tsang I W, Xu D. Domain transfer multiple kernel learning. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(3): 465-479[20] Dai W Y, Yang Q, Xue G R, Yu Y. Self-taught clustering. In: Proceedings of the 25th International Conference on Machine Learning. New York, NY, USA: ACM, 2008. 200-207[21] Jang J S R, Sun C T, Mizutani E. Neural-Fuzzy and Soft-Computing. Upper Saddle River, NJ: Prentice-Hall, 1997[22] Wang Shi-Tong. Neural-Fuzzy Systems and Their Application. Beijing: Beihang University Press, 1998(王士同. 神经模糊系统及其应用. 北京: 北京航空航天大学出版社, 1998)[23] Mamdani E H. Application of fuzzy logic to approximate reasoning using linguistic synthesis. IEEE Transactions on Computers, 1977, 26(12): 1182-1191[24] Larsen P M. Industrial applications of fuzzy logic control. International Journal of Man-Machine Studies, 1980, 12(1): 3-10[25] Takagi T, Sugeno M. Fuzzy identification of systems and its application to modeling and control. IEEE Transactions on Systems, Man, and Cybernetics, 1985, 15(1): 116-132[26] Azeem M F, Hanmandlu M, Ahmad N. Generalization of adaptive neuro-fuzzy inference systems. IEEE Transactions on Neural Networks, 2000, 11(6): 1332-1346[27] Chung F L, Deng Z H, Wang S T. From minimum enclosing ball to fast fuzzy inference system training on large datasets. IEEE Transactions on Fuzzy Systems, 2009, 17(1): 173-184[28] Mark G, Chao H. Probability density estimation from optimally condensed data samples. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25(10): 1253 -1264[29] Deng Z H, Chung F L, Wang S T. FRSDE: fast reduced set density estimator using minimal enclosing ball approximation. Pattern Recognition, 2008, 41(4): 1363-1372[30] Domeniconi C, Gunopulos D, Ma S, Yan B J, Al-Razgan M, Papadopoulos D. Locally adaptive metrics for clustering high dimensional data. Data Mining and Knowledge Discovery Journal, 2007, 14(1): 63-97[31] Wu K L, Yu J, Yang M S. A novel fuzzy clustering algorithm based on a fuzzy scatter matrix with optimality tests. Pattern Recognition Letters, 2005, 26(5): 639-652[32] Deng Z H, Choi K S, Chung F L, Wang S T. Enhanced soft subspace clustering integrating within-cluster and between-cluster information. Pattern Recognition, 2010, 43(3): 767- 781[33] Yu J, Cheng Q S, Huang H K. Analysis of the weighting exponent in the FCM. IEEE Transactions on Systems Man, and Cybernetics-Part B: Cybernetics, 2004, 34(1): 643-639[34] Yang S, Yan S C, Zhang C, Tang X O. Bilinear analysis for kernel selection and nonlinear feature extraction. IEEE Transactions on Neural Networks, 2007, 18(5): 1442-1452[35] Jang J S. ANFIS: adaptive-network-based fuzzy inference system. IEEE Transactions on Systems, Man, and Cybernetics, 1993, 23(3): 665-685[36] Fan R E, Chan P H, Lin C J. Working set selection using second order information for training support vector machines. Journal of Machine Learning Research, 2005, 6: 1889-1918[37] Frey B J, Dueck D. Clustering by passing messages between data points. Science, 2007, 315(5814): 972-976[38] Gan M T, Hanmandlu M, Tan A H. From a Gaussian mixture model to additive fuzzy systems. IEEE Transactions on Fuzzy Systems, 2005, 13(3): 303-316
  • 加载中
计量
  • 文章访问数:  2771
  • HTML全文浏览量:  87
  • PDF下载量:  2024
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-08-02
  • 修回日期:  2012-03-05
  • 刊出日期:  2012-09-20

目录

    /

    返回文章
    返回