[1]
|
Zadeh L A. Probability theory and fuzzy logic are complementary rather than competitive. Technometrics, 1995, 37(3): 271-276[2] Dubois D, Prade H. Fuzzy sets and probability: misunderstandings, bridges, and gaps. In: Proceedings of the 2nd IEEE Conference on Fuzzy Systems. San Francisco, CA: IEEE, 1993. 1059-1068[3] Mendel J M. Uncertain Rule-based Fuzzy Logic Systems Introduction and New Directions. New York: Prentice-Hall, 2000[4] Zhu L, Chung F L, Wang S T. Generalized fuzzy C-means clustering algorithm with improved fuzzy partitions. IEEE Transactions on Systems, Man, and Cybernetics, 2009, 39(3): 578-591[5] Astrm K J, McAvoy T J. Intelligent control. Journal of Process Control, 1993, 2(3): 115-127[6] Deng Z H, Choi K S, Chung F L, Wang S T. Scalable TSK fuzzy modeling for very large datasets using minimal-enclosing-ball approximation. IEEE Transactions on Fuzzy Systems, 2011, 19(2): 210-226[7] Chung F L, Deng Z H, Wang S T. An adaptive fuzzy-inference-rule-based flexible model for automatic elastic image registration. IEEE Transactions on Fuzzy Systems, 2009, 17(5): 995-1010[8] Dai X L, Khorram S. A feature-based image registration algorithm using improved chain-code representation combined with invariant moments. IEEE Transactions on Geoscience and Remote Sensing, 1999, 37(5): 2351-2362[9] Le Moigne J, Campbell W J, Cbased on the correlation of wavelet features. IEEE Transactions on Geoscience and Remote Sensing, 2002, 40(8): 1849-1864[10] Juang C F, Chiu S H, Chang S W. A self-organizing TS-type fuzzy network with support vector learning and its application to classification problems. IEEE Transactions on Fuzzy Systems, 2007, 15(5): 998-1008[11] Juang C F, Chiu S H, Shiu S J. Fuzzy system learned through fuzzy clustering and support vector machine for human skin color segmentation. IEEE Transactions on Systems, Man, and Cybernetics, 2007, 37(6): 1077-1087[12] Juang C F, Hsieh C D. TS-fuzzy system-based support vector regression. Fuzzy Sets and Systems, 2009, 160(17): 2486 -2504[13] Lin C T, Yeh C M, Liang S F, Chung J F, Kumar N. Support-vector-based fuzzy neural network for pattern classification. IEEE Transactions on Fuzzy Systems, 2006, 14(1): 31-41[14] Pan J L, Yang Q. A survey on transfer learning. IEEE Transactions on Knowledge and Data Engineering, 2010, 22(10): 1345-1359[15] Raina R, Battle A, Lee H, Packer B, Ng A Y. Self-taught learning: transfer learning from unlabeled data. In: Proceedings of the 24th International Conference on Machine Learning. New York, NY, USA: ACM, 2007. 759-766[16] Xue G R, Dai W Y, Yang Q, Yu Y. Topic-bridged PLSA for cross-domain text classification. In: Proceedings of the 31st annual international ACM SIGIR conference on Research and development in information retrieval. New York, NY, USA: ACM, 2008. 627-634[17] Pan S J, Tsang I W, Kwok J T, Yang Q. Domain adaptation via transfer component analysis. In: Proceedings of the 21st international jont conference on Artifical intelligence. San Francisco, CA, USA: ACM, 2009. 1187-1192[18] Glorot X, Bordes A, Bengio Y. Domain adaptation for large-scale sentiment classification: a deep learning approach. In: Proceedings of the 28th International Conference on Machine Learning. Bellevue, Washington, USA: ACM, 2011. 513-520[19] Duan L X, Tsang I W, Xu D. Domain transfer multiple kernel learning. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(3): 465-479[20] Dai W Y, Yang Q, Xue G R, Yu Y. Self-taught clustering. In: Proceedings of the 25th International Conference on Machine Learning. New York, NY, USA: ACM, 2008. 200-207[21] Jang J S R, Sun C T, Mizutani E. Neural-Fuzzy and Soft-Computing. Upper Saddle River, NJ: Prentice-Hall, 1997[22] Wang Shi-Tong. Neural-Fuzzy Systems and Their Application. Beijing: Beihang University Press, 1998(王士同. 神经模糊系统及其应用. 北京: 北京航空航天大学出版社, 1998)[23] Mamdani E H. Application of fuzzy logic to approximate reasoning using linguistic synthesis. IEEE Transactions on Computers, 1977, 26(12): 1182-1191[24] Larsen P M. Industrial applications of fuzzy logic control. International Journal of Man-Machine Studies, 1980, 12(1): 3-10[25] Takagi T, Sugeno M. Fuzzy identification of systems and its application to modeling and control. IEEE Transactions on Systems, Man, and Cybernetics, 1985, 15(1): 116-132[26] Azeem M F, Hanmandlu M, Ahmad N. Generalization of adaptive neuro-fuzzy inference systems. IEEE Transactions on Neural Networks, 2000, 11(6): 1332-1346[27] Chung F L, Deng Z H, Wang S T. From minimum enclosing ball to fast fuzzy inference system training on large datasets. IEEE Transactions on Fuzzy Systems, 2009, 17(1): 173-184[28] Mark G, Chao H. Probability density estimation from optimally condensed data samples. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25(10): 1253 -1264[29] Deng Z H, Chung F L, Wang S T. FRSDE: fast reduced set density estimator using minimal enclosing ball approximation. Pattern Recognition, 2008, 41(4): 1363-1372[30] Domeniconi C, Gunopulos D, Ma S, Yan B J, Al-Razgan M, Papadopoulos D. Locally adaptive metrics for clustering high dimensional data. Data Mining and Knowledge Discovery Journal, 2007, 14(1): 63-97[31] Wu K L, Yu J, Yang M S. A novel fuzzy clustering algorithm based on a fuzzy scatter matrix with optimality tests. Pattern Recognition Letters, 2005, 26(5): 639-652[32] Deng Z H, Choi K S, Chung F L, Wang S T. Enhanced soft subspace clustering integrating within-cluster and between-cluster information. Pattern Recognition, 2010, 43(3): 767- 781[33] Yu J, Cheng Q S, Huang H K. Analysis of the weighting exponent in the FCM. IEEE Transactions on Systems Man, and Cybernetics-Part B: Cybernetics, 2004, 34(1): 643-639[34] Yang S, Yan S C, Zhang C, Tang X O. Bilinear analysis for kernel selection and nonlinear feature extraction. IEEE Transactions on Neural Networks, 2007, 18(5): 1442-1452[35] Jang J S. ANFIS: adaptive-network-based fuzzy inference system. IEEE Transactions on Systems, Man, and Cybernetics, 1993, 23(3): 665-685[36] Fan R E, Chan P H, Lin C J. Working set selection using second order information for training support vector machines. Journal of Machine Learning Research, 2005, 6: 1889-1918[37] Frey B J, Dueck D. Clustering by passing messages between data points. Science, 2007, 315(5814): 972-976[38] Gan M T, Hanmandlu M, Tan A H. From a Gaussian mixture model to additive fuzzy systems. IEEE Transactions on Fuzzy Systems, 2005, 13(3): 303-316
|