2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一类不确定热方程自适应边界控制

李健 刘允刚

李健, 刘允刚. 一类不确定热方程自适应边界控制. 自动化学报, 2012, 38(3): 469-472. doi: 10.3724/SP.J.1004.2012.00469
引用本文: 李健, 刘允刚. 一类不确定热方程自适应边界控制. 自动化学报, 2012, 38(3): 469-472. doi: 10.3724/SP.J.1004.2012.00469
LI Jian, LIU Yun-Gang. Adaptive Boundary Control for a Class of Uncertain Heat Equations. ACTA AUTOMATICA SINICA, 2012, 38(3): 469-472. doi: 10.3724/SP.J.1004.2012.00469
Citation: LI Jian, LIU Yun-Gang. Adaptive Boundary Control for a Class of Uncertain Heat Equations. ACTA AUTOMATICA SINICA, 2012, 38(3): 469-472. doi: 10.3724/SP.J.1004.2012.00469

一类不确定热方程自适应边界控制

doi: 10.3724/SP.J.1004.2012.00469
详细信息
    通讯作者:

    刘允刚, 山东大学控制科学与工程学院教授.主要研究方向为随机系统控制,非线性系统分析和自适应控制.E-mail: lygfr@sdu.edu.cn

Adaptive Boundary Control for a Class of Uncertain Heat Equations

  • 摘要: 研究了一类含有不确定控制系数和边界扰动的热方程自适应状态反馈边界控制设计问题. 通过Lyapunov方法, 显式地得到了仅需系统边界状态信息的自适应控制器. 证明了闭环系统状态是L2[0,1]稳定的, 特别是当边界扰动消逝时, 该状态收敛到0. 此外, 通过灵活选取参数调节律的初始条件, 适当放宽了相关文献中相容性条件对系统初始条件的限制. 仿真算例验证了本文方法的有效性.
  • [1] Triggiani R. Boundary feedback stabilizability of parabolic equations. Applied Mathematics and Optimization, 1980, 6(1): 201-220[2] Kim J U, Renardy Y. Boundary control of the Timoshenko beam. SIAM Journal on Control and Optimization, 1987, 25(6): 1417-1429[3] Lasiecka I, Triggiani R. Control Theory for Partial Differential Equations: Continuous and Approximation Theories. Cambridge: Cambridge University Press, 2000[4] Boskovic D M, Krstic M, Liu W J. Boundary control of an unstable heat equation via measurement of domain-averaged temperature. IEEE Transactions on Automatic Control, 2001, 46(12): 2022-2028[5] Liu W J. Boundary feedback stabilization of an unstable heat equation. SIAM Journal on Control and Optimization, 2004, 42(3): 1033-1043[6] Smyshlyaev A, Krstic M. Closed-form boundary state feedbacks for a class of 1-D partial integro-differential equations. IEEE Transactions on Automatic Control, 2004, 49(12): 2185-2202[7] Krstic M, Smyshlyaev A. Adaptive boundary control for unstable parabolic PDEs-Part I: Lyapunov design. IEEE Transactions on Automatic Control, 2008, 53(7): 1575-1591[8] Smyshlyaev A, Krstic M. Adaptive boundary control for unstable parabolic PDEs-Part II: estimation-based designs. Automatica, 2007, 43(9): 1543-1556[9] Liu W J, Krstic M. Adaptive control of Burgers' equation with unknown viscosity. International Journal of Adaptive Control and Signal Processing, 2001, 15(7): 745-766[10] Nguyen Q C, Hong K S. Asymptotic stabilization of a nonlinear axially moving string by adaptive boundary control. Journal of Sound and Vibration, 2010, 329(22): 4588-4603[11] Fard M P, Sagatun S I. Exponential stabilization of a transversely vibrating beam by boundary control via Lyapunov's direct method. Journal of Dynamic Systems, Measurement, and Control, 2001, 123(2): 195-200[12] Queiroz M S, Dawson D M, Nagarkatti S P, Zhang F M. Lyapunov-Based Control of Mechanical Systems. Boston: Birkhauser, 2000[13] Krstic M. On global stabilization of Burgers' equation by boundary control. Systems and Control Letters, 1999, 37(3): 123-141[14] Yang W Y, Cao W, Chung T S, Morris J. Applied Numerical Methods Using MATLAB. New Jersey: John Wiley and Sons, 2005
  • 加载中
计量
  • 文章访问数:  2372
  • HTML全文浏览量:  72
  • PDF下载量:  930
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-12-14
  • 修回日期:  2011-04-19
  • 刊出日期:  2012-03-20

目录

    /

    返回文章
    返回