2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

贪婪算法与压缩感知理论

方红 杨海蓉

方红, 杨海蓉. 贪婪算法与压缩感知理论. 自动化学报, 2011, 37(12): 1413-1421. doi: 10.3724/SP.J.1004.2011.01413
引用本文: 方红, 杨海蓉. 贪婪算法与压缩感知理论. 自动化学报, 2011, 37(12): 1413-1421. doi: 10.3724/SP.J.1004.2011.01413
FANG Hong, YANG Hai-Rong. Greedy Algorithms and Compressed Sensing. ACTA AUTOMATICA SINICA, 2011, 37(12): 1413-1421. doi: 10.3724/SP.J.1004.2011.01413
Citation: FANG Hong, YANG Hai-Rong. Greedy Algorithms and Compressed Sensing. ACTA AUTOMATICA SINICA, 2011, 37(12): 1413-1421. doi: 10.3724/SP.J.1004.2011.01413

贪婪算法与压缩感知理论

doi: 10.3724/SP.J.1004.2011.01413
详细信息
    通讯作者:

    方红 上海第二工业大学理学院副教授.主要研究方向为图像处理. E-mail: fanghong@sf.sspu.cn

Greedy Algorithms and Compressed Sensing

  • 摘要: 贪婪算法以其重建速度快、重建方法实现简便的特点在压缩感知(Compressed sensing, CS)理论中获得了广泛的应用. 本文首先介绍压缩感知的基本理论;然后,着重介绍现有几种重要的贪 婪重建算法,包括MP, OMP, IBOOMP, StOMP, SP, ROMP和CoSaMP等, 详细给出每种算法的数学框架和本质思想,着重从最优匹配原子的选择策略和残差信号的更新 方式这两个方面对各种算法进行对比分析,以限制等容常数为条件讨论各种算法在实现重建时的性能,包括重建时间、 重建的稳定性等;最后,通过模拟实验进一步验证了 各种算法的重建效果,同时模拟实验结果还进一步得出各种算法的重建效果与待重建信号 本身的稀疏度及测量次数这三者之间的关系,这也为新的更优算法的提出打下理论基础.
  • [1] Donoho D L. Compressed sensing. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306[2] Candes E J. Compressive sampling. In: Proceedings of the International Congress of Mathematics. Madrid, Spain: the European Mathematical Society, 2006. 1433-1452[3] Donoho D L, Huo X. Uncertainty principles and ideal atomic decompositions. IEEE Transactions on Information Theory, 2001, 47(7): 2845-2862[4] Donoho D L, Elad M. Optimally sparse representation in general (nonorthogonal) dictionaries via L1 minimization. Proceedings of the National Academy of Sciences USA, 2003, 100(5): 2197-2202[5] Laska J N, Kirolos S, Duarte M F, Ragheb T S, Baraniuk R G, Massoud Y. Theory and implementation of an analog-to-information converter using random demodulation. In: Proceedings of the IEEE International Symposium on Circuits and Systems. New Orleans, USA: IEEE, 2007. 1959-1962[6] Ragheb T, Kirolos S, Laska J, Gilbert A, Strauss M, Baraniuk R, Massoud Y. Implementation models for analog-to-information conversion via random sampling. In: Proceedings of the 50th Symposium on Circuits and Systems. Montreal, Canada: IEEE, 2007. 325-328[7] Bajwa W, Haupt J, Sayeed A, Nowak R. Compressive wireless sensing. In: Proceedings of the 5th International Conference on Information Processing in Sensor Networks. New York, USA: IEEE, 2006. 134-142[8] Chen S B, Donoho D L, Saunders M A. Atomic decomposition by basis pursuit. SIAM Journal on Scientific Computing, 1998, 20(1): 33-61[9] Figueiredo M A, Nowak R D, Wright S J. Gradient projection for sparse reconstruction: application to compressed sensing and other inverse problems. IEEE Journal of Selected Topics in Signal Processing, 2007, 1(4): 586-597[10] Daubechies I, Defrise M, De Mol C. An iterative thresholding algorithm for linear inverse problems with a sparsity constraint. Communications on Pure and Applied Mathematics, 2004, 57(11): 1413-1457[11] Blumensath T, Davies M. Iterative hard thresholding for compressed sensing. Applied and Computational Harmonic Analysis, 2009, 27(3): 265-274[12] Cai J F, Osher S, Shen Z W. Linearized Bregman iterations for compressed sensing. Mathematics of Computation, 2008, 78(267): 1515-1536[13] Yin W, Osher S, Goldfarb D, Darbon J. Bregman iterative algorithms for L1-minimization with applications to compressed sensing. SIAM Journal on Imaging Sciences, 2008, 1(1): 143-168[14] Osher S, Mao Y, Dong B, Yin W T. Fast linearized Bregman iteration for compressive sensing and sparse denoising. Communications in Mathematical Sciences, 2010, 8(1): 93-111[15] Cai J F, Osher S, Shen Z W. Convergence of the linearized Bregman iteration for L1-norm minimization. Mathematics of Computation, 2009, 78(268): 2127-2136[16] Gilbert A C, Guha S, Indyk P, Muthukrishnan S, Strauss M J. Near-optimal sparse Fourier representations via sampling. In: Proceedings of the 34th Annual ACM Symposium on Theory of Computing. New York, USA: ACM, 2000. 152-161[17] Gilbert A, Strauss M, Tropp J, Vershynin R. Algorithmic linear dimension reduction in the L1 norm for sparse vectors. In: Proceedings of the 44th Annual Allerton Conference on Communication, Control and Computing. Allerton, USA: Curran Associates, 2006. 1-9[18] Gormode G, Muthukrishan S. Combinatorial algorithms for compressed sensing. In: Proceedings of the 40th Annual Conference on Information Sciences and Systems. Princeton, USA: IEEE, 2006. 280-294[19] Gilbert A, Strauss M, Tropp J, Vershynin R. One sketch for all: fast algorithms for compressed sensing. In: Proceedings of the 39th Annual ACM Symposium on Theory of Computing. New York, USA: ACM, 2007. 237-246[20] Zayyani H, Babaie-Zadeh M, Jutten C. Bayesian pursuit algorithm for sparse representation. In: Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing. Taipei, China: IEEE, 2009. 1549-1552[21] Baron S, Sarvoham R, Baraniuk R G. Bayesian compressive sensing via belief propagation. IEEE Transactions on Signal Processing, 2010, 58(1): 269-280[22] Seeger M W, Steinke F, Tsuda K. Bayesian inference and optimal design in the sparse linear model. Journal of Machine Learning Research-Proceedings Track, 2007, 2(6): 444-451[23] Weiss Y, Chang H S, Freeman W T. Learning compressed sensing. In: Proceedings of the 45th Allerton Conference on Communications, Control and Computing. Illinois, USA: Curran Associates, 2007. 1-7[24] Mallat S, Zhang Z. Matching pursuit with time-frequency dictionaries. IEEE Transactions on Signal Processing, 1993, 41(12): 3397-3415[25] Tropp J, Gilbert A. Signal recovery from random measurements via orthogonal matching pursuit. IEEE Transactions on Information Theory, 2007, 53(12): 4655-4666[26] Donoho D L, Tsaig Y, Drori I, Starck J L. Sparse Solution of Underdetermined Linear Equations by Stage Wise Orthogonal Matching Pursuit, Technical Report No.2006-2, Department of Statistics, Stanford University, USA, 2006[27] Needell D, Vershynin R. Signal recovery from inaccurate and incomplete measurements via regularized orthogonal matching pursuit. IEEE Journal of Selected Topics in Signal Processing, 2010, 4(2): 310-316[28] Needell D, Tropp J A. CoSaMP: iterative signal recovery from incomplete and inaccurate samples. Applied and Computational Harmonic Analysis, 2008, 26(3): 301-321[29] Dai W, Milenkovic O. Subspace pursuit for compressive sensing signal reconstruction. IEEE Transactions on Information Theory, 2009, 55(5): 2230-2249[30] Fang Hong, Zhang Quan-Bing, Wei Sui. Image reconstruction based on improved backward optimized orthogonal matching pursuit algorithm. Journal of South China University of Technology (Natural Science), 2008, 36(8): 23-27(方红, 章权兵, 韦穗. 改进的后退型最优正交匹配追踪的图像重建方法. 华南理工大学学报(自然科学版), 2008, 36(8): 23-27)[31] Candes E, Romberg J, Tao T. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Transactions on Information Theory, 2006, 52(2): 489-509[32] Candes E, Tao T. Decoding by linear programming. IEEE Transactions on Information Theory, 2005, 51(12): 4203-4215[33] Candes E, Romberg J, Tao T. Stable signal recovery form incomplete and inaccurate measurements. Communications on Pure and Applied Mathematics, 2006, 59(8): 1207-1223[34] Candes E. The restricted isometry property and its implications for compressed sensing. Comptes Rendus Mathematique, 2008, 346(9-10): 589-592[35] Foucart S, Lai M. Sparsest solutions of underdetermined linear systems via Lq-minimization for 0 q 1. Applied and Computational Harmonic Analysis, 2009, 26(3): 395-407[36] Cai T, Wang L, Xu G W. Shifting inequality and recovery of sparse signals. IEEE Transactions on Signal Processing, 2010, 58(3): 1300-1308[37] Cai T, Wang L, Xu G W. New bounds for restricted isometry constants. IEEE Transactions on Information Theory, 2010, 56(9): 4388-4394[38] Fang Hong, Zhang Quan-Bing, Wei Sui. A method of image reconstruction based on sub-Gaussian random projection. Journal of Computer Research and Development, 2008, 45(8): 1402-1407(方红, 章权兵, 韦穗. 基于亚高斯随机投影的图像重建方法. 计算机研究与发展, 2008, 45(8): 1402-1407)[39] Varadarajan B, Khudanpur S, Tran T D. Stepwise optimal subspace pursuit for improving sparse recovery. IEEE Signal Processing Letters, 2011, 18(1): 27-30[40] Candes E, Tao T. Near optimal signal recovery from random projections: universal encoding strategies? IEEE Transactions on Information Theory, 2006, 52(12): 5406-5425[41] Rudelson M, Vershynin R. Sparse reconstruction by convex relaxation: Fourier and Gaussian measurements. In: Proceedings of the 40th Annual Conference on Information Science and Systems. Princeton, USA: IEEE, 2006. 207-212[42] Takhar D, Laska J, Wakin M, Duarte M F, Baron D, Sarvotham S, Kelly K, Baraniuk R. A new compressive imaging camera architecture using optical-domain compression. In: Proceedings of the Computational Imaging IV at SPIE Electronic Imaging. San Jose, USA: SPIE, 2006. 43-52[43] Duarte M, Davenport M, Takhar D, Laska J, Sun T, Kelly K, Baraniuk R. Single-pixel imaging via compressive sampling. IEEE Signal Processing Magazine, 2008, 25(2): 83-91[44] Baraniuk R, Steeghs P. Compressive radar imaging. In: Proceedings of the IEEE Radar Conference. Boston, USA: IEEE, 2007. 128-133[45] Kirolos S, Laska J, Wakin M, Duarte M, Baron D, Ragheb T, Massoud Y, Baraniuk R. Analog-to-information conversion via random demodulation. In: Proceedings of the IEEE Dallas/CAS Workshop on Design, Applications, Integration and Software. Richardson, USA: IEEE, 2006. 71-74[46] Ragheb T, Kirolos S, Laska J, Gilbert A, Strauss M, Baraniuk R, Massoud Y. Implementation models for analog-to-information conversion via random sampling. In: Proceedings of the 50th Midwest Symposium on Circuits and Systems. Montreal, Canada: IEEE, 2007. 325-328[47] Laska J, Kirolos S, Massoud Y, Baraniuk R, Gilbert A, Iwen M, Strauss M. Random sampling for analog-to-information conversion of wideband signals. In: Proceedings of the IEEE Dallas/CAS Workshop on Design, Applications, Integration and Software. Richardson, USA: IEEE, 2006. 119-122[48] Lustig M, Donoho D L, Pauly J M. Sparse MRI: the application of compressed sensing for rapid MR imaging. Magnetic Resonance in Medicine, 2007, 58(6): 1182-1195[49] Bajwa W, Haupt J, Sayeed A M, Nowak R. Compressive wireless sensing. In: Proceedings of the 5th International Conference on Information Processing in Sensor Networks. Nashville, USA: IEEE, 2006. 134-142[50] Rabbat M, Haupt J, Singh A, Nowak R. Decentralized compression and predistribution via randomized gossiping. In: Proceedings of the 5th International Conference on Information Processing in Sensor Networks. Nashville, USA: IEEE, 2006. 51-59
  • 加载中
计量
  • 文章访问数:  3222
  • HTML全文浏览量:  118
  • PDF下载量:  5450
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-09-06
  • 修回日期:  2011-07-14
  • 刊出日期:  2011-12-20

目录

    /

    返回文章
    返回