2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种线性分数阶系统稳定性的频域判别准则

高哲 廖晓钟

高哲, 廖晓钟. 一种线性分数阶系统稳定性的频域判别准则. 自动化学报, 2011, 37(11): 1387-1394. doi: 10.3724/SP.J.1004.2011.01387
引用本文: 高哲, 廖晓钟. 一种线性分数阶系统稳定性的频域判别准则. 自动化学报, 2011, 37(11): 1387-1394. doi: 10.3724/SP.J.1004.2011.01387
GAO Zhe, LIAO Xiao-Zhong. A Stability Criterion for Linear Fractional Order Systems in Frequency Domain. ACTA AUTOMATICA SINICA, 2011, 37(11): 1387-1394. doi: 10.3724/SP.J.1004.2011.01387
Citation: GAO Zhe, LIAO Xiao-Zhong. A Stability Criterion for Linear Fractional Order Systems in Frequency Domain. ACTA AUTOMATICA SINICA, 2011, 37(11): 1387-1394. doi: 10.3724/SP.J.1004.2011.01387

一种线性分数阶系统稳定性的频域判别准则

doi: 10.3724/SP.J.1004.2011.01387
详细信息
    通讯作者:

    高哲 北京理工大学自动化学院博士研究生. 2008年获东北大学硕士学位.主要研究方向为分数阶系统与智能优化方法.E-mail: gaozhe2@yahoo.cn

A Stability Criterion for Linear Fractional Order Systems in Frequency Domain

  • 摘要: 在分析了分数阶系统稳定性与传递函数分母相角增量的关系的基础上, 提出了一种线性分数阶系统的频域稳定性判别定理.定义了关于分数阶系统分母各项系数的两个函数,通过分析这两个函数正实数解的大小关系以及解的数目与分母最高阶数的关系,给出了分数阶系统稳定所需满足的条件.将用于在频域上对整数阶系统稳定性判别的Hermite-Biehler定理推广到对分数阶系统稳定性的判定.最后,通过对两个数值算例的分析,说明了提出的稳定性判别准则的正确性.
  • [1] Machado J T, Kiryakova V, Mainardi F. Recent history of fractional calculus. Communications in Nonlinear Science and Numerical Simulation, 2011, 16(3): 1140-1153[2] Gabano J D, Poinot T. Fractional modelling and identification of thermal systems. Signal Processing, 2011, 91(3): 531-541[3] Chen Y Q Petras I, Xue D Y. Fractional control——a tutorial. In: Proceedings of the American Control Conference. St. Louis, USA: IEEE, 2009. 1397-1410[4] Podlubny I. Fractional-order systems and PI^{λD^{μ controllers. IEEE Transactrans on Automatic Control, 1999, 44(1): 208-214[5] Chen Y Q, Vinagre B M. A new IIR-type digital fractional order differentiator. Signal Processing, 2003, 83(11): 2359-2365[6] Tavazoei M S, Haeri M. A note on the stability of fractional order systems. Mathematics and Computers in Simulation, 2009, 79(5): 1566-1576[7] Chen Y Q, Ahn H S, Podlubny I. Robust stability check of fractional order linear time invariant systems with interval uncertainties. Signal Processing, 2006, 86(10): 2611-2618[8] Lu J G, Chen Y Q. Robust stability and stabilization of fractional-order interval systems with the fractional order: the 0α1 case. IEEE Transactrans on Automatic Control, 2010, 55(1): 152-158[9] Ahn H S, Chen Y Q, Podlubny I. Robust stability test of a class of linear time-invariant interval fractional-order system using Lyapunov inequality. Applied Mathematics and Computation, 2007, 187(1): 27-34[10] Balochian S, Sedigh A K, Zafer A. Stabilization of multi-input hybrid fractional-order systems with state delay. ISA Transactions, 2011, 50(1): 21-27[11] Wang Zhen-Bin, Cao Guang-Yi, Zhu Xin-Jian. Stability conditions and criteria for fractional order linear time-invariant systems. Control Theory and Application, 2004, 21(6): 922-926 (王振滨, 曹广益, 朱新坚. 分数阶线性定常系统的稳定性条件及其判据. 控制理论与应用, 2004, 21(6): 922-926)[12] Ho M T, Datta A, Bhattacharyya S P. A generalization of the Hermite-Biehler theorem. In: Proceedings of the 34th Conference on Decision and Control. New Orleans, USA: IEEE, 1995. 130-131[13] Roy A, Iqbal K. PID controller tuning for the first-order-plus-dead-time process model via Hermite-Biehler theorem. ISA Transactions, 2005, 44(3): 363-378[14] Fang B. Computation of stabilizing PID gain regions based on the inverse Nyquist plot. Journal of Process Control, 2010, 20(10): 1183-1187[15] Ho M T. Synthesis of H_∈fty PID controllers: a parametric approach. Automatica, 2003, 39(6): 1069-1075[16] Das S. Functional Fractional Calculus for System Indentification and Controls. Berlin: Springer, 2008. 26-33[17] Wang Zhen-Bin, Cao Guang-Yi, Zhu Xin-Jian. Research on the internal and external stability of fractional order linear systems. Control and Decision, 2004, 19(10): 1171-1174 (王振滨, 曹广益, 朱新坚. 分数阶线性系统的内部和外部稳定性研究. 控制与决策, 2004, 19(10): 1171-1174)[18] Ho M T, Datta A, Bhattacharyya S P. Generalizations of the Hermite-Biehler theorem: the complex case. Linear Algebra and Its Applications, 2000, 320(1-3): 23-26
  • 加载中
计量
  • 文章访问数:  2335
  • HTML全文浏览量:  71
  • PDF下载量:  980
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-01-17
  • 修回日期:  2011-04-16
  • 刊出日期:  2011-11-20

目录

    /

    返回文章
    返回