[1]
|
Machado J T, Kiryakova V, Mainardi F. Recent history of fractional calculus. Communications in Nonlinear Science and Numerical Simulation, 2011, 16(3): 1140-1153[2] Gabano J D, Poinot T. Fractional modelling and identification of thermal systems. Signal Processing, 2011, 91(3): 531-541[3] Chen Y Q Petras I, Xue D Y. Fractional control——a tutorial. In: Proceedings of the American Control Conference. St. Louis, USA: IEEE, 2009. 1397-1410[4] Podlubny I. Fractional-order systems and PI^{λD^{μ controllers. IEEE Transactrans on Automatic Control, 1999, 44(1): 208-214[5] Chen Y Q, Vinagre B M. A new IIR-type digital fractional order differentiator. Signal Processing, 2003, 83(11): 2359-2365[6] Tavazoei M S, Haeri M. A note on the stability of fractional order systems. Mathematics and Computers in Simulation, 2009, 79(5): 1566-1576[7] Chen Y Q, Ahn H S, Podlubny I. Robust stability check of fractional order linear time invariant systems with interval uncertainties. Signal Processing, 2006, 86(10): 2611-2618[8] Lu J G, Chen Y Q. Robust stability and stabilization of fractional-order interval systems with the fractional order: the 0α1 case. IEEE Transactrans on Automatic Control, 2010, 55(1): 152-158[9] Ahn H S, Chen Y Q, Podlubny I. Robust stability test of a class of linear time-invariant interval fractional-order system using Lyapunov inequality. Applied Mathematics and Computation, 2007, 187(1): 27-34[10] Balochian S, Sedigh A K, Zafer A. Stabilization of multi-input hybrid fractional-order systems with state delay. ISA Transactions, 2011, 50(1): 21-27[11] Wang Zhen-Bin, Cao Guang-Yi, Zhu Xin-Jian. Stability conditions and criteria for fractional order linear time-invariant systems. Control Theory and Application, 2004, 21(6): 922-926 (王振滨, 曹广益, 朱新坚. 分数阶线性定常系统的稳定性条件及其判据. 控制理论与应用, 2004, 21(6): 922-926)[12] Ho M T, Datta A, Bhattacharyya S P. A generalization of the Hermite-Biehler theorem. In: Proceedings of the 34th Conference on Decision and Control. New Orleans, USA: IEEE, 1995. 130-131[13] Roy A, Iqbal K. PID controller tuning for the first-order-plus-dead-time process model via Hermite-Biehler theorem. ISA Transactions, 2005, 44(3): 363-378[14] Fang B. Computation of stabilizing PID gain regions based on the inverse Nyquist plot. Journal of Process Control, 2010, 20(10): 1183-1187[15] Ho M T. Synthesis of H_∈fty PID controllers: a parametric approach. Automatica, 2003, 39(6): 1069-1075[16] Das S. Functional Fractional Calculus for System Indentification and Controls. Berlin: Springer, 2008. 26-33[17] Wang Zhen-Bin, Cao Guang-Yi, Zhu Xin-Jian. Research on the internal and external stability of fractional order linear systems. Control and Decision, 2004, 19(10): 1171-1174 (王振滨, 曹广益, 朱新坚. 分数阶线性系统的内部和外部稳定性研究. 控制与决策, 2004, 19(10): 1171-1174)[18] Ho M T, Datta A, Bhattacharyya S P. Generalizations of the Hermite-Biehler theorem: the complex case. Linear Algebra and Its Applications, 2000, 320(1-3): 23-26
|