2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种基于变分相关向量机的特征选择和分类结合方法

徐丹蕾 杜兰 刘宏伟 洪灵 李彦兵

徐丹蕾, 杜兰, 刘宏伟, 洪灵, 李彦兵. 一种基于变分相关向量机的特征选择和分类结合方法. 自动化学报, 2011, 37(8): 932-943. doi: 10.3724/SP.J.1004.2011.00932
引用本文: 徐丹蕾, 杜兰, 刘宏伟, 洪灵, 李彦兵. 一种基于变分相关向量机的特征选择和分类结合方法. 自动化学报, 2011, 37(8): 932-943. doi: 10.3724/SP.J.1004.2011.00932
XU Dan-Lei, DU Lan, LIU Hong-Wei, HONG Ling, LI Yan-Bing. Joint Feature Selection and Classification Design Based on Variational Relevance Vector Machine. ACTA AUTOMATICA SINICA, 2011, 37(8): 932-943. doi: 10.3724/SP.J.1004.2011.00932
Citation: XU Dan-Lei, DU Lan, LIU Hong-Wei, HONG Ling, LI Yan-Bing. Joint Feature Selection and Classification Design Based on Variational Relevance Vector Machine. ACTA AUTOMATICA SINICA, 2011, 37(8): 932-943. doi: 10.3724/SP.J.1004.2011.00932

一种基于变分相关向量机的特征选择和分类结合方法

doi: 10.3724/SP.J.1004.2011.00932
详细信息
    通讯作者:

    杜兰 西安电子科技大学电子工程学院教授. 2007年获得西安电子科技大学信息与通信工程博士学位, 主要研究方向为统计信号处理、雷达信号处理、机器学习及其在雷达目标检测与识别方面的应用.本文通信作者.E-mail: dulan@mail.xidian.edu.cn

Joint Feature Selection and Classification Design Based on Variational Relevance Vector Machine

  • 摘要: 相关向量机(Relevance vector machine, RVM)是一种函数形式等价于支持向量机(Support vector machine, SVM)的全概率模型,利用变分贝叶斯(Variational Bayesian, VB)方法求解的RVM可以给出所有参数的后验分布. 进一步,通过对样本所在原始特征空间的稀疏化,基于线性核的RVM可以在分类的同时实现对原始特征的线性选择. 本文在传统VB-RVM的基础上提出一种特征选择和分类结合方法. 该方法采用Probit模型将分类问题与回归问题有机地结合起来, 同时,通过对特征维的幂变换扩展,不仅在分类时增加了样本的信息量, 可以构造非线性分类面,而且实现了非线性特征选择的功能. 通过对仿真数据和实测数据分别进行实验, 证明了该特征选择和分类结合方法的实用性和有效性.
  • [1] Fodor I K. A Survey of Dimension Reduction Techniques, Technical Report UCRL-ID-148494, Lawrence Livermore National Laboratory, USA, 2002[2] Jain A, Zongker D. Feature selection: evaluation, application, and small sample performance. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19(2): 153-158[3] Jackson J E. A User's Guide to Principal Component. New York: John Wiley and Sons, 1991[4] Yu H, Yang J. A direct LDA algorithm for high-dimensional data with application to face recognition. Pattern Recognition, 2001, 34(10): 2067-2070[5] Mardia K V, Kent J T, Bibby J M. Multivariate Analysis. London: Academic Press, 1980[6] Duda R O, Hart P E, Stork D G. Pattern Classification (Second Edition). New York: John Wiley and Sons, 1997. 94-99[7] Kira K, Rendell L A. The feature selection problem: traditional methods and a new algorithm. In: Proceedings of the 10th National Conference on Artificial Intelligence. California, USA: AAAI, 1992. 129-134[8] Wang X Y, Yang J, Teng X L, Xia W J, Jensen R. Feature selection based on rough sets and particle swarm optimization. Pattern Recognition Letters, 2007, 28(4): 459-471[9] Tipping M E. The relevance vector machine. Advances in Neural Information Processing Systems 12. Cambridge: The MIT Press, 2000. 652-658[10] Tipping M E. Sparse Bayesian learning and the relevance vector machine. Journal of Machine Learning Research, 2001, 1: 211-244[11] Bishop C M, Tipping M E. Variational relevance vector machines. In: Proceedings of the 16th Conference on Uncertainty in Artificial Intelligence. San Francisco, USA: Morgan Kaufmann, 2000. 46-53[12] Carin L, Dobeck G J. Relevance vector machine feature selection and classification for underwater targets. In: Proceedings of the OCEANS. San Diego, USA: IEEE, 2003. 1110-1110[13] Li D F, Hu W C. Feature selection with RVM and its application to prediction modeling. Lecture Notes in Computer Science. Berlin: Springer-Verlag, 2006. 1140-1144[14] Girolami M, Rogers S. Variational Bayesian multinomial probit regression with Gaussian process priors. Neural Computation, 2006, 18(8): 1790-1817[15] Zhou X, Wang X, Dougherty E R. Multi-class cancer classification using multinomial probit regression with Bayesian gene selection. IEE Proceedings Systems Biology, 2006, 153(2): 70-78[16] Damoulas T, Girolami M. Probabilistic multi-class multi-kernel learning: on protein fold recognition and remote homology detection. Bioinformatics, 2008, 24(10): 1264-1270[17] Burges C J C. A tutorial on support vector machine for pattern recognition. Data Mining and Knowledge Discovery, 1998, 2(2): 121-167[18] Hou Qing-Yu. Study of Radar Automatic Target Recognition Methods Based on High Resolution Profile [Ph.D. dissertation], Xidian University, China, 2009(侯庆禹. 基于高分辨距离像的雷达自动目标识别方法研究 [博士学位论文], 西安电子科技大学, 中国, 2009)[19] Krishnapuram B, Carin L, Figueiredo M A T, Hartemink A J. Sparse multinomial logistic regression: fast algorithms and generalization bounds. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(6): 957-968[20] Zhang Hai-Juan, Zhang Xiao-Ran, Wen Yan-Qing, Guo Ming-Ming. Using Fisher information matrix to deal with parameter estimation for truncated samples from normal distribution. Journal of Chongqing Technology Business University (Natural Science Edition), 2007, 24(3): 228-229(张海娟, 张晓冉, 温艳清, 郭明明. 用Fisher信息阵处理截断正态分布的参数估计. 重庆工商大学学报(自然科学版), 2007, 24(3): 228-229)[21] Beal M J. Variational Algorithms for Approximate Bayesian Inference [Ph.D. dissertation], London University, UK, 2003[22] Nielsen F B. Variational Approach to Factor Analysis and Related Models [Master dissertation], Technical University of Denmark, Denmark, 2004[23] Bi J B, Bennett K P, Embrechts M, Breneman C, Song M H. Dimensionality reduction via sparse support vector machines. Journal of Machine Learning Research, 2003, 3: 1229-1243[24] Xue Y, Liao X J, Carin L, Krishnapuram B. Multi-task learning for classification with Dirichlet process priors. Journal of Machine Learning Research, 2007, 8: 35-63[25] Bradley A P. The use of the area under the ROC curve in the evaluation of machine learning algorithms. Pattern Recognition, 1997, 30(7): 1145-1159
  • 加载中
计量
  • 文章访问数:  2261
  • HTML全文浏览量:  82
  • PDF下载量:  958
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-09-16
  • 修回日期:  2011-02-01
  • 刊出日期:  2011-08-20

目录

    /

    返回文章
    返回