-
摘要: 传感器饱和是控制系统中较为常见的一种物理约束. 本文针对一类含饱和输出的受限系统, 提出了两种学习控制算法. 具体而言, 首先, 对于重复运行的被控系统, 设计了开环P型迭代学习控制器, 实现在有限时间区间内对期望轨迹的完全跟踪, 并在λ范数意义下分析了算法的收敛性, 给出了含饱和输出的迭代学习控制系统的收敛条件. 进而, 针对期望轨迹为周期信号的被控系统, 提出了闭环P型重复学习控制算法, 并分析了这类系统的收敛性条件. 最后, 通过一个仿真实例验证了本文所提算法的有效性.Abstract: Sensor saturation is a common physical constraint in control systems. Two learning control algorithms are proposed in this research for a class of linear systems with saturated output. Specifically, an open-loop P-type iterative learning controller is first designed for repetitive operating systems to ensure entire tracking in limited interval, and the convergence condition is derived by employing λ norm analysis. Furthermore, for controlled systems with periodic desired trajectory, the asymptotic tracking condition of closed-loop P-type repetitive learning control technique is deduced as well. Finally, the simulation results show the effectiveness of the proposed algorithms.
计量
- 文章访问数: 2158
- HTML全文浏览量: 60
- PDF下载量: 1146
- 被引次数: 0