2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

有向图中网络Euler-Lagrange系统的自适应协调跟踪

梅杰 张海博 马广富

梅杰, 张海博, 马广富. 有向图中网络Euler-Lagrange系统的自适应协调跟踪. 自动化学报, 2011, 37(5): 596-603. doi: 10.3724/SP.J.1004.2011.00596
引用本文: 梅杰, 张海博, 马广富. 有向图中网络Euler-Lagrange系统的自适应协调跟踪. 自动化学报, 2011, 37(5): 596-603. doi: 10.3724/SP.J.1004.2011.00596
MEI Jie, ZHANG Hai-Bo, MA Guang-Fu. Adaptive Coordinated Tracking for Networked Euler-Lagrange Systems under a Directed Graph. ACTA AUTOMATICA SINICA, 2011, 37(5): 596-603. doi: 10.3724/SP.J.1004.2011.00596
Citation: MEI Jie, ZHANG Hai-Bo, MA Guang-Fu. Adaptive Coordinated Tracking for Networked Euler-Lagrange Systems under a Directed Graph. ACTA AUTOMATICA SINICA, 2011, 37(5): 596-603. doi: 10.3724/SP.J.1004.2011.00596

有向图中网络Euler-Lagrange系统的自适应协调跟踪

doi: 10.3724/SP.J.1004.2011.00596
详细信息
    通讯作者:

    梅杰

Adaptive Coordinated Tracking for Networked Euler-Lagrange Systems under a Directed Graph

More Information
    Corresponding author: MEI Jie
  • 摘要: 基于一致性理论, 在有向图中研究网络 Euler-Lagrange 系统的协调跟踪控制. 所有跟随智能体的动力学模型均为 Euler-Lagrange 方程. 在仅有部分跟随智能体能获取领航智能体信息的情形下, 同时考虑系统模型的参数不确定性, 设计分布式自适应控制律实现所有跟随智能体对领航智能体的跟踪. 针对领航智能体的运动状态, 考虑以下两种情形: 1) 领航智能体为固定点; 2) 领航智能体为动态点. 对第一种情形, 设计的控制律使得所有跟随智能体渐近交会于固定点; 对第二种情形, 首先对每个跟随智能体设计分布式连续估计器, 然后提出了分布式自适应控制律. 当每个跟随智能体均能获取领航智能体的加速度信息时, 设计的控制律能实现对领航智能体的渐近跟踪, 当跟随智能体不能获取领航智能体的加速度信息时, 跟踪误差是有界的. 最后通过仿真分析验证设计的控制算法是合理有效的.
  • [1] Ren W, Beard R W. Consensus seeking in multiagent systems under dynamically changing interaction topologies. IEEE Transactions on Automatic Control, 2005, 50(5): 655-661 [2] Fax J A, Murray R M. Information flow and cooperative control of vehicle formations. IEEE Transactions on Automatic Control, 2004, 49(9): 1465-1476 [3] Chen Yang-Yang, Tian Yu-Ping. Directed coordinated control for multiagent formation motion on a set of given curves. Acta Automatica Sinica, 2009, 35(12): 1541-1549(陈杨杨, 田玉平. 多智能体沿多条给定路径编队运动的有向协同控制. 自动化学报, 2009, 35(12): 1541-1549)[4] Su H S, Wang X F, Lin Z L. Flocking of multi-agents with a virtual leader. IEEE Transactions on Automatic Control, 2009, 54(2): 293-307 [5] Ren W, Beard R W, Atkins E M. Information consensus in multivehicle cooperative control. IEEE Control Systems Magazine, 2007, 27(2): 71-82 [6] Olfati-Saber R, Fax J A, Murray R M. Consensus and cooperation in networked multi-agent systems. Proceedings of the IEEE, 2007, 95(1): 215-233 [7] Hong Y G, Hu J P, Gao L X. Tracking control for multi-agent consensus with an active leader and variable topology. Automatica, 2006, 42(7): 1177-1182 [8] Cao Y, Ren W. Distributed coordinated tracking via a variable structure approach --- Part I: consensus tracking. In: Proceedings of the American Control Conference. Baltimore, USA: IEEE, 2010. 4744-4749[9] Ren W. Distributed leaderless consensus algorithms for networked Euler-Lagrange systems. International Journal of Control, 2009, 82(11): 2137-2149 [10] Cheng L, Hou Z G, Tan M. Decentralized adaptive consensus control for multi-manipulator system with uncertain dynamics. In: Proceedings of the IEEE International Conference on Systems, Man, and Cybernetics. Washington D. C., USA: IEEE, 2008. 2712-2717[11] Chopra N, Stipanovic D M, Spong M W. On synchronization and collision avoidance for mechanical systems. In: Proceedings of the American Control Conference. Seattle, USA: IEEE, 2008. 3713-3718[12] Rodriguez-Angeles A, Nijmeijer H. Mutual synchronization of robots via estimated state feedback: a cooperative approach. IEEE Transactions on Control Systems Technology, 2004, 12(4): 542-554 [13] Sun D, Shao X Y, Feng G. A model-free cross-coupled control for position synchronization of multi-axis motions: theory and experiments. IEEE Transactions on Control Systems Technology, 2007, 15(2): 306-314 [14] Chung S J, Slotine J J E. Cooperative robot control and concurrent synchronization of Lagrangian systems. IEEE Transactions on Robotics, 2009, 25(3): 686-700 [15] Chung S J, Ahsun U, Slotine J J E. Application of synchronization to formation flying spacecraft: Lagrangian approach. Journal of Guidance, Control, and Dynamics, 2009, 32(2): 512-526 [16] Spong M W, Chopra N. Synchronization of networked Lagrangian systems. Lecture Notes in Control and Information Sciences, New York: Springer-Verlag, 2007. 47-59[17] Cheng L, Hou Z G, Tan M. Decentralized adaptive leader-follower control of multi-manipulator system with uncertain dynamics. In: Proceedings of the 34th Annual Conference of the IEEE Industrial Electronics. Orlando, USA: IEEE, 2008. 1608-1613[18] Hokayem P F, Stipanovic D M, Spong M W. Semiautonomous control of multiple networked Lagrangian systems. International Journal of Robust and Nonlinear Control, 2009, 19(18): 2040-2055 [19] Mei J, Ren W, Ma G. Distributed coordinated tracking for multiple Euler-Lagrange systems. In: Proceedings of the IEEE Conference on Decision and Control. Atlanta, USA: IEEE, 2010. 3208-3213[20] Spong M W, Hutchinson S, Vidyasagar M. Robot Modeling and Control. New Jersey: John Wiley and Sons, 2006[21] Godsil C, Royle G. Algebraic Graph Theory. New York: Springer, 2001[22] Horn R A, Johnson C R. Matrix Analysis. Cambridge: Cambridge University Press, 1985[23] Khalil H K. Nonlinear Systems (Third Edition). New Jersey: Prentice Hall, 2002[24] Frangos C, Yavin Y. Inverse control of a three-link manipulator. Computer Methods in Applied Mechanics and Engineering, 2001, 190(40-41): 5311-5324
  • 加载中
计量
  • 文章访问数:  2559
  • HTML全文浏览量:  67
  • PDF下载量:  1547
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-09-15
  • 修回日期:  2010-11-24
  • 刊出日期:  2011-05-20

目录

    /

    返回文章
    返回