[1]
|
Luengo J, Garcia S, Herrera F. A study on the use of imputation methods for experimentation with radial basis function network classifiers handling missing attribute values: the good synergy between RBFNs and EventCovering method. Neural Networks, 2010, 23(3): 406-418[2] Ferrari S, Bellocchio F, Piuri V, Borghese N A. A hierarchical RBF online learning algorithm for real-time 3-D scanner. IEEE Transactions on Neural Networks, 2010, 21(2): 275-285[3] Ye Jian, Ge Lin-Dong, Wu Yue-Xian. An application of improved RBF neural network in modulation recognition. Acta Automatica Sinica, 2007, 33(6): 652-654(叶健, 葛临东, 吴月娴. 一种优化的RBF神经网络在调制识别中的应用. 自动化学报, 2007, 33(6): 652-654)[4] Peng H, Wu J, Inoussa G, Deng Q L, Nakano K. Nonlinear system modeling and predictive control using the RBF nets-based quasi-linear ARX model. Control Engineering Practice, 2009, 17(1): 59-66[5] Bortman M, Aladjem M. A growing and pruning method for radial basis function networks. IEEE Transactions on Neural Networks, 2009, 20(6): 1039-1045[6] Platt J. A resource-allocating network for function interpolation. Neural Computation, 1991, 3(2): 213-225[7] Lu Y W, Sundararajan N, Saratchandran P. A sequential learning scheme for function approximation using minimal radial basis function neural networks. Neural Computation, 1997, 9(2): 461-478[8] Panchapakesan C, Palaniswami M, Ralph D, Manzie C. Effects of moving the center's in an RBF network. IEEE Transactions on Neural Networks, 2002, 13(6): 1299-1307[9] Gonzalez J, Rojas I, Ortega J, Pomares H, Fernández F J, Diaz A F. Multiobjective evolutionary optimization of the size, shape, and position parameters of radial basis function networks for function approximation. IEEE Transactions on Neural Networks, 2003, 14(6): 1478-1495[10] Feng H M. Self-generation RBFNs using evolutional PSO learning. Neurocomputing, 2006, 70(1-3): 241-251[11] Huang G B, Saratchandran P, Sundararajan N. A generalized growing and pruning RBF (GGAP-RBF) neural network for function approximation. IEEE Transactions on Neural Networks, 2005, 16(1): 57-57[12] Lian J M, Lee Y G, Scott D S, Stanislaw H Z. Self-organizing radial basis function network for real-time approximation of continuous-time dynamical systems. IEEE Transactions on Neural Networks, 2008, 19(3): 460-474[13] Qiao Jun-Fei, Han Hong-Gui. Optimal structure design for RBFNN structure. Acta Automatica Sinica, 2010, 36(6): 865-872 (乔俊飞, 韩红桂. RBF神经网络的结构动态优化设计. 自动化学报, 2010, 36(6): 865-872)[14] Barandiaran X, Moreno A. On the nature of neural information: a critique of the received view 50 years later. Neurocomputing, 2008, 71(4-6): 681-692[15] Kotaleski J H, Blackwell K T. Modelling the molecular mechanisms of synaptic plasticity using systems biology approaches. Nature Reviews Neuroscience, 2010, 11(4): 239-251[16] Han H G, Chen Q L, Qiao J F. An efficient self-organizing RBF neural network for water quality prediction. Neural Networks, 2011, 24(7): 717-725[17] Buzzi C, Grippo L, Sciandrone M. Convergent decomposition techniques for training RBF neural networks. Neural Computation, 2001, 13(8): 1891-1920[18] Neves G, Cooke S F, Bliss T V P. Synaptic plasticity, memory and the hippocampus: a neural network approach to causality. Nature Reviews Neuroscience, 2008, 9(1): 65-75[19] Xu J H, Ho D W C. A new training and pruning algorithm based on node dependence and Jacobian rank deficiency. Neurocomputing, 2006, 70(1-3): 544-558[20] Lee C Y, Lin C J, Chen H J. A self-constructing fuzzy CMAC model and its applications. Information Sciences, 2007, 177(1): 264-280
|