2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于信息强度的RBF神经网络结构设计研究

韩红桂 乔俊飞 薄迎春

韩红桂, 乔俊飞, 薄迎春. 基于信息强度的RBF神经网络结构设计研究. 自动化学报, 2012, 38(7): 1083-1090. doi: 10.3724/SP.J.1004.2012.01083
引用本文: 韩红桂, 乔俊飞, 薄迎春. 基于信息强度的RBF神经网络结构设计研究. 自动化学报, 2012, 38(7): 1083-1090. doi: 10.3724/SP.J.1004.2012.01083
HAN Hong-Gui, QIAO Jun-Fei, BO Ying-Chun. On Structure Design for RBF Neural Network Based on Information Strength. ACTA AUTOMATICA SINICA, 2012, 38(7): 1083-1090. doi: 10.3724/SP.J.1004.2012.01083
Citation: HAN Hong-Gui, QIAO Jun-Fei, BO Ying-Chun. On Structure Design for RBF Neural Network Based on Information Strength. ACTA AUTOMATICA SINICA, 2012, 38(7): 1083-1090. doi: 10.3724/SP.J.1004.2012.01083

基于信息强度的RBF神经网络结构设计研究

doi: 10.3724/SP.J.1004.2012.01083
详细信息
    通讯作者:

    韩红桂

On Structure Design for RBF Neural Network Based on Information Strength

  • 摘要: 在系统研究前馈神经网络的基础上,针对径向基函数(Radial basis function, RBF) 网络的结构设计问题,提出一种弹性RBF神经网络结构优化设计方法. 利用隐含层神经元的输出信息(Output-information, OI)以及隐含层神经元与输出层神经元间的交互信息(Multi-information, MI)分析网络的连接强度, 以此判断增加或删除RBF神经网络隐含层神经元, 同时调整神经网络的拓扑结构,有效地解决了RBF神经网络结构设计问题; 利用梯度下降的参数修正算法保证了最终RBF网络的精度, 实现了神经网络的结构和参数自校正. 通过对典型非线性函数的逼近与污水处理过程关键水质参数建模, 结果证明了该弹性RBF具有良好的动态特征响应能力和逼近能力, 尤其是在训练速度、泛化能力、最终网络结构等方面较之最小资源神经网络(Minimal resource allocation net works, MRAN)、增长修剪RBF 神经网络(Generalized growing and pruning RBF, GGAP-RBF)和自组织RBF神经网络(Self-organizing RBF, SORBF)有较大的提高.
  • [1] Luengo J, Garcia S, Herrera F. A study on the use of imputation methods for experimentation with radial basis function network classifiers handling missing attribute values: the good synergy between RBFNs and EventCovering method. Neural Networks, 2010, 23(3): 406-418[2] Ferrari S, Bellocchio F, Piuri V, Borghese N A. A hierarchical RBF online learning algorithm for real-time 3-D scanner. IEEE Transactions on Neural Networks, 2010, 21(2): 275-285[3] Ye Jian, Ge Lin-Dong, Wu Yue-Xian. An application of improved RBF neural network in modulation recognition. Acta Automatica Sinica, 2007, 33(6): 652-654(叶健, 葛临东, 吴月娴. 一种优化的RBF神经网络在调制识别中的应用. 自动化学报, 2007, 33(6): 652-654)[4] Peng H, Wu J, Inoussa G, Deng Q L, Nakano K. Nonlinear system modeling and predictive control using the RBF nets-based quasi-linear ARX model. Control Engineering Practice, 2009, 17(1): 59-66[5] Bortman M, Aladjem M. A growing and pruning method for radial basis function networks. IEEE Transactions on Neural Networks, 2009, 20(6): 1039-1045[6] Platt J. A resource-allocating network for function interpolation. Neural Computation, 1991, 3(2): 213-225[7] Lu Y W, Sundararajan N, Saratchandran P. A sequential learning scheme for function approximation using minimal radial basis function neural networks. Neural Computation, 1997, 9(2): 461-478[8] Panchapakesan C, Palaniswami M, Ralph D, Manzie C. Effects of moving the center's in an RBF network. IEEE Transactions on Neural Networks, 2002, 13(6): 1299-1307[9] Gonzalez J, Rojas I, Ortega J, Pomares H, Fernández F J, Diaz A F. Multiobjective evolutionary optimization of the size, shape, and position parameters of radial basis function networks for function approximation. IEEE Transactions on Neural Networks, 2003, 14(6): 1478-1495[10] Feng H M. Self-generation RBFNs using evolutional PSO learning. Neurocomputing, 2006, 70(1-3): 241-251[11] Huang G B, Saratchandran P, Sundararajan N. A generalized growing and pruning RBF (GGAP-RBF) neural network for function approximation. IEEE Transactions on Neural Networks, 2005, 16(1): 57-57[12] Lian J M, Lee Y G, Scott D S, Stanislaw H Z. Self-organizing radial basis function network for real-time approximation of continuous-time dynamical systems. IEEE Transactions on Neural Networks, 2008, 19(3): 460-474[13] Qiao Jun-Fei, Han Hong-Gui. Optimal structure design for RBFNN structure. Acta Automatica Sinica, 2010, 36(6): 865-872 (乔俊飞, 韩红桂. RBF神经网络的结构动态优化设计. 自动化学报, 2010, 36(6): 865-872)[14] Barandiaran X, Moreno A. On the nature of neural information: a critique of the received view 50 years later. Neurocomputing, 2008, 71(4-6): 681-692[15] Kotaleski J H, Blackwell K T. Modelling the molecular mechanisms of synaptic plasticity using systems biology approaches. Nature Reviews Neuroscience, 2010, 11(4): 239-251[16] Han H G, Chen Q L, Qiao J F. An efficient self-organizing RBF neural network for water quality prediction. Neural Networks, 2011, 24(7): 717-725[17] Buzzi C, Grippo L, Sciandrone M. Convergent decomposition techniques for training RBF neural networks. Neural Computation, 2001, 13(8): 1891-1920[18] Neves G, Cooke S F, Bliss T V P. Synaptic plasticity, memory and the hippocampus: a neural network approach to causality. Nature Reviews Neuroscience, 2008, 9(1): 65-75[19] Xu J H, Ho D W C. A new training and pruning algorithm based on node dependence and Jacobian rank deficiency. Neurocomputing, 2006, 70(1-3): 544-558[20] Lee C Y, Lin C J, Chen H J. A self-constructing fuzzy CMAC model and its applications. Information Sciences, 2007, 177(1): 264-280
  • 加载中
计量
  • 文章访问数:  2202
  • HTML全文浏览量:  57
  • PDF下载量:  1458
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-09-28
  • 修回日期:  2011-12-12
  • 刊出日期:  2012-07-20

目录

    /

    返回文章
    返回